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Abstract 

The area of cyberspace defense mechanism design has received immense attention from the research 

community for more than two decades. However, the cyberspace security problem is far from com- 

pletely solved. In this project we explored the applicability of game theoretic approaches to address 

some of the challenging cyber security issues: (a) We built a state-of-the-art attack taxonomy which can 

provide the system administrator with information on how to mitigate or remediate an attack, (b) We 

conducted a thorough survey of the existing game-theoretic solutions to cyber security problems and 

proposed a detailed taxonomy, which points out that this area requires more attention from the research 

community, (c) We proposed stochastic game models for generic cyber activities (attacks and defenses), 

which eliminate the unrealistic assumptions of the existing models. We validated the effectiveness of our 

model via extensive simulation, (d) We modeled the interaction between a class of attacks (such as the 

Denial of Service (DoS) and Distributed Denial of Service (DDoS)) and the possible countermeasures as 

a two-player general-sum game. We validated our analytical results via simulation experiments, (e) We 

compiled a set of metrics which can evaluate the cost and benefit of a game-theoretic defense solution. 

In addition, we have proposed a Game Theory Inspired Defense Architecture (GIDA). 

Keywords: Cyber security, game theory, stochastic games, imperfect information, static games, dynamic 

games, general-sum games, performance metrics, security metrics. 
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1    Introduction 

National Security Presidential Directive 54 defines cyber space as the interdependent network of informa- 

tion technology infrastructures, and includes the Internet, telecommunication networks, computer systems 

and embedded processors and controllers in critical industries |74|. The Nation's economic progress and 

social well-being are becoming increasingly dependent on cyberspace. On the other hand, the growing 

inter-connectivity and the increasing availability of the computational power for the attacker is providing 

for distributed and sophisticated attacks |34|. Attackers can disrupt telecommunications, electrical power, 

energy pipelines, refineries, financial networks and other critical infrastructures |73|. Recent incidents in- 

dicate that cyber attacks can cause significant damage to governments, private enterprises, and the general 

public in terms of money, data confidentiality, and reputation |92, 30, 881. 

The research community has been paying attention to the network security problem for more than two 

decades. However, the problem is far from being completely solved. We frequently see a race between the 

security specialists and the attackers in the following sense: one day an intelligent solution is proposed to 

fix a network vulnerability, and the next day the attackers come up with a smarter way to circumvent the 

proposed countermeasure. The most important factor which makes this problem difficult is that the local 

network, which needs to be secured, is typically connected to the Internet and major parts of the Internet are 

beyond the control of network administrators. However, the Internet has become an integral component of 

running the daily business of government, financial institutions, and the general public. As a result, there is 

a pressing need to design countermeasures for network attacks. 

Traditionally, network security solutions employ either protective devices such as firewalls or reactive de- 

vices such as Intrusion Detection Systems (IDSs) and both of them are used in conjunction. The intrusion 

detection algorithms are either based on identifying an attack signature or detecting the anomalous behavior 

of the system. Once an attack is detected the employed IDS notifies the network administrator who then 

takes an action to stop or mitigate the attack. However, currently IDSs are not very sophisticated and they 

rely on ad-hoc schemes and experimental work. The current IDS technology may prove sufficient for de- 

fending against casual attackers using well known techniques, but there is still a need to design tools to 

defend against sophisticated and well organized adversaries. 

The weakness of the traditional network security solutions is that they lack a quantitative decision frame- 

work. To this end, a few groups of researchers have started advocating the utilization of game theoretic 

approaches. As game theory deals with problems where multiple players with contradictory objectives 

compete with each other, it can provide us with a mathematical framework for analysis and modeling net- 

work security problems. As an example, a network administrator and an attacker can be viewed as two 

competing players participating in a game. In addition, game theory has the capability of examining hun- 

dreds of thousands of possible scenarios before taking the best action; hence, it can sophisticate the decision 

process of the network administrator to a large extent. As a result, several game theoretic approaches have 

recently been proposed to address network security issues. 

In this project we explored the applicability of game theoretic approaches to address some of the challenging 



cyber security issues. We conducted a survey of the literature related to the cyber attacks techniques to be 

better aware of the problem space, and then performed extensive research on how game theory can enrich 

the solution space. 

We built a state-of-the-art attack taxonomy which classifies attacks by attack vectors, operational impact, 

defense, informational impact, and target. In addition to enhancing our knowledge about the various attack 

methodologies, this taxonomy can provide the system administrator with information of how to mitigate or 

remediate a particular attack. 

In addition, we conducted a thorough survey of the existing game-theoretic solutions to cyber security 

problems and proposed a detailed taxonomy for classifying them. Highlighting the basic game type used 

in the defense mechanisms, while abstracting detailed differences, this taxonomy provides the reader with a 

global view of the current solution space. We observe that this area requires more attention from the research 

community. 

Further, we observe that the prior stochastic game models for network security assumed that players have 

perfect information, which is a strong assumption. We propose a stochastic game model for generic cyber 

activities (attacks and defenses), which eliminates the unrealistic assumptions of the existing models. We 

validated the effectiveness of our model via extensive simulation in MATLAB. In addition, prior body of 

work related to network security did not present an algorithm to compute the equilibrium of a general-sum 

stochastic game. We explored the game theory literature to find such an algorithm and discovered that only 

recently game theoreticians proposed one such algorithm. We analyzed this algorithm, verified the analytical 

results via simulation, and found that this algorithm has many limitations. 

Furthermore, we focus on a particular class of attacks, namely the DoS/DDoS attacks and model the interac- 

tion between these attacks and the possible countermeasures as a two-player non-zero-sum game. We study 

the existence of the Nash equilibrium which represents the smartest strategy of the players. We also show 

the benefit of using the game-theoretic defense mechanism for the network administrator. We validated our 

analytical results via simulation experiments using NS-3. We created a new module in NS-3 for our experi- 

ment, which we call as NetHook. NetHook provides the means for an application or module to have direct 

access to packets as they traverse the Internet Stack. 

We also propose a set of metrics which can evaluate the cost and benefit of a game-theoretic defense solution. 

We define metrics that allow us to evaluate the security level, performance, and quality in a game theoretic 

defense architecture. We discuss how to compare different game theoretical defense models based on these 

metrics. We note that the ranking of a game model may change over time due to the dynamic nature of the 

cyber scenarios. 

In addition, we propose a few important research directions for future work. In particular, we envision a 

game inspired defense architecture (GIDA) which leverages a game theoretic model to counter cyber attacks. 

GIDA will be capable of transparently observing network traffic, identifying malicious activity, measuring 

the risk, and acting upon that information in a way that will offer the best defense measure for that situation. 

The brain of GIDA is a game model which decides the best countermeasure after a thorough analysis of the 

cost and reward. 



Below we summarize our contributions through this project: 

• We analyzed the state-of-the-art in attack technology, and compiled a vulnerability-centric cyber at- 

tack taxonomy. Our taxonomy intends to provide a defender with vulnerability information which 

encompasses the attack, the impact of the attack on a targeted system, and the corresponding counter- 

measure. This taxonomy was published as a technical report by the Computer Science Department at 

University of Memphis |86|. 

• We performed a thorough survey of the literature related to the application of game theory to address 

network security problems. We proposed a complete and detailed taxonomy of the current game- 

theoretic approaches. Our survey paper was presented at the 43rd Hawaii International Conference on 

System Sciences |80|. 

• We extended prior stochastic game models by relaxing the assumption that the players have perfect 

information about the current state of the system. We evaluate the equilibrium condition in our model 

through theoretical analysis and detailed simulation. Our paper on this work was presented at the 

5th International Conference on Information Warfare and Security |84|. We also analyzed the only 

algorithm available in the literature to compute a general-sum stochastic game, verified the analytical 

results via simulation, and found that this algorithm has many limitations. 

• We propose game models to capture the interaction between the DoS/DDoS attacks and the poten- 

tial mitigation techniques. We also present the theoretical analysis for the attacker's and defender's 

strategy which can lead to the Nash equilibrium. We validate our analytical results via extensive sim- 

ulation in NS-3. We implemented a new module in NS-3, NetHook, that provides packet inspection 

capabilities similar to that of Linux NetFilter. Our paper on this work appeared in the Simulation 

Multiconference (SpringSim), 2010 |97|. 

• We compiled a set of metrics which can evaluate the cost and benefit of a game-theoretic defense 

solution. We define metrics that allow us to evaluate the security level, performance, and quality in a 

game theoretic defense architecture. We discuss how to compare different game theoretical defense 

models based on these metrics. 

Organization of the rest of this report is as follows. In Section 2 we discuss our research on attack taxon- 

omy. In Section 3 we provide a brief overview of game theory to set the background of our other research 

directions. We present our survey on game theoretic security solutions in Section 4. Next, we discuss 

our research on stochastic game models in Section 5, and we present our game models for DoS attacks in 

Section 6. Finally, we discuss our research on metrics in Section 7, and conclude in Section 8. 



2    AVOIDIT: A Cyber Attack Taxonomy 

Cyber attacks have created a global threat, both in defending local and global networks. Attacks are be- 

coming more sophisticated and possess the ability to spread to numerous vulnerable hosts in a matter of 

seconds |78|. It is essential to provide tools necessary in detecting, classifying, and defending from various 

types of attacks. A variety of taxonomies aim at classifying vulnerabilities or attacks, but to date they have 

limitations in providing a defense strategy that can be used in a local application setting. This can be due 

to the enormous possibilities of defense strategies. We believe that coupling a defense mechanism with an 

attack taxonomy would enable a network administrator to not only understand the vulnerability, but also the 

strategy needed to mitigate and/or remediate the potential exploitation. Limitations exist toward providing 

defense strategies within an attack taxonomy. This presents an invaluable research area focused on the in- 

formation a network administrator can apply when attempting to defend the network against cyber attacks. 

We propose a solution that addresses the shortcomings of existing taxonomies. 

There is a deficient standard when disseminating vulnerability information, making it difficult for analysis 

with multiple vulnerabilities for potential defense. Landwehr et al. |491 and Lindqvist et al [52] state a 

taxonomy is most useful when it classifies threats in scope that correspond to potential defenses. This 

taxonomy differs from previous taxonomies, as it aids a defender to not only identify attacks, but also 

defense measures to mitigate and remediate attack vulnerabilities. One approach to gaining insight into 

attacker's target is to consider the attack paths, or combination of exploits [70). AVOIDIT intends to provide 

a defender with vulnerability details to what encompasses an attack and any impact the attack may have on 

a targeted system. A blended attack exploits one or more vulnerabilities to perform an attack against a target 

[64|. AVOIDIT is able to classify blended attacks by providing the ability to label various vulnerabilities of 

an attack in a tree-like structure. 

People question the impact a cyber attack has once its target is compromised. AVOIDIT provides useful 

information to the network administrator. We provide a mean to classify vulnerabilities that lead to cyber 

attacks with methods to mitigate and remediate vulnerabilities to help alleviate the impact of a successful 

exploitation. Avoiding the attack could simply require defending against propagation or further damage once 

an attack is identified. In order to better grasp this scenario, we provide several representative examples of 

attacks and how our proposed taxonomy successfully classifies well known attacks with defensive strategies. 

2.1    A Brief Survey of Attack Taxonomies 

Kjaerland |48| proposed a taxonomy of cyber-intrusions from Computer Emergency Response Team (CERT) 

related to computer crime profiling, highlighting cyber-criminals and victims. In this research, attacks were 

analyzed using facet theory and multidimensional scaling (MDS) with Method of Operation, Target, Source, 

and Impact. Each facet contains a number of elements with an exhaustive description. Kjaerland uses these 

facets to compare commercial versus government incidents. Kjaerland's taxonomy focuses on the motive 

of the attacker in an attempt to quantify why the attack takes place, and where the attack originated. Her 

taxonomy contains some limitations as she provides a high level view to the methods of operation without 



providing more details to the methods that can be used in identifying attack inception. 

Hansman and Hunt [40| proposed a taxonomy with four unique dimensions that provide a holistic classifi- 

cation covering network and computer attacks. Their taxonomy provides assistance in improving computer 

and network security as well as consistency in language with attack description. The first dimension being 

attack vector is used to classify the attack. The second dimension classifies the target of the attack. The third 

dimension consists of the vulnerability classification number, or criteria from Howard's taxonomy [42|. The 

fourth and final dimension highlights the payload or effects involved. Within each dimension various levels 

of information are provided to supply attack details. Hansman et al. mentioned the need of future work to 

improve classifying blended attacks, which is a limitation within their taxonomy. Another limitation is the 

lack of vulnerability information, which prohibits capturing information to aid in protecting a system from 

attacks. 

Chakrabarti et al. [ 19| proposed a taxonomy focused on the Internet and its infrastructure as the basis for 

highlighting attacks and security. Infrastructure attacks can lead to considerable destruction due to different 

Internet infrastructure components having various trust relationships with one another. Chakrabarti et al. 

proposed a taxonomy consisting of four categories on Internet infrastructure attacks: DNS hacking, Route 

table poisoning, Packet mistreatment, and Denial of Service. They used the categories to develop a com- 

prehensive understanding of the security threats. Chakrabarti et al. presented a valid point in securing the 

Internet infrastructure and provides techniques for securing the infrastructure. Their taxonomy is limited to 

layers one through three and lacks a comprehensive list of ways an infrastructure can be attacked, including 

the possibility of blended attacks. With limited research performed on aiding Internet infrastructure security, 

Chakrabarti et al. provided new research development in this area. 

Mirkovic and Reiher |62] offer a comprehensive taxonomy of Distributed Denial of Services (DDoS) attack 

and defense mechanisms in aim to classify attacks and defense strategies. This research highlight features 

of attack strategies, where the strategies are imperative in devising countermeasures. Mirkovic and Reiher's 

taxonomy of DDoS attacks is categorized by Degree of Automation, Exploited Weakness, Source Address 

Validity, Attack Rate Dynamics, Possibility of Characterization, Persistent Agent Set, Victim Type, and Im- 

pact on Victim. These categories are used to examine the exploitation, the victim impact, and characteristics 

with exploiting a DDoS attack. In addition to classifying DDoS attacks, Mirkovic and Reiher developed a 

taxonomy of DDoS defenses consisting of Activity Level, Cooperation Degree, and Deployment Location. 

The combination classifying DDoS attacks and defenses within a taxonomy provides communication of 

threats to foster cooperation between researchers for discussing solutions. 

Lough [57] proposed an attack-centric taxonomy called VERDICT (Validation Exposure Randomness Deal- 

location Improper Conditions Taxonomy). Lough focuses on four major causes of security errors: Improper 

Validation, Improper Exposure, Improper Randomness, and Improper Deallocation. He labels these four 

characteristics with a prefix of "Improper" with attacks being thought of as improper conditions. Validation 

refers to improperly validating or unconstrained data, which also includes physical security. Exposure in- 

volves the improper exposure of information that could be used directly or indirectly for the exploitation of 

a vulnerability. Randomness deals with the fundamentals of cryptography and the improper usage of ran- 



domness. Deallocation is the improper destruction of information, or residuals of data, which also includes 

dumpster diving. He uses one or more of these characteristics to describe vulnerability within a system. 

Hansman and Hunt [40] describe Lough's taxonomy as lacking pertinent information that would be bene- 

ficial for knowledge bodies, such as CERT, to classify day-to-day attacks and issuing advisories. Lough's 

taxonomy lacks the classification to the type of attack, such as worms, Trojans, viruses, etc. 

Howard |42| provides an incident taxonomy that classifies attacks by events, which is an attack directed 

at a specific target intended to result in a changed state. The event involves the action and the target. He 

highlights all steps that encompass an attack and how an attack develops. The attack consists of five logical 

steps an attacker performs to achieve an unauthorized result. Those steps are: tools, vulnerability, action, 

target, and unauthorized result. The tool refers to the mechanism used to perform the attack; the vulnerability 

is the type of exploit used to perform attack. The action refers to the method used by the attacker to perform 

the attack (i.e. Probe, Scan, Authenticate, etc.). The target is the intention the attack is attempting to 

compromise, and the unauthorized result is the change state caused due to the attack. Although Howard 

presents a useful taxonomy that provides an informative baseline for cyber intrusions, he lacks the details 

needed for thorough insight into the attack. 

2.2    Our Proposed Taxonomy: AVOIDIT 

A taxonomy defines what data is to be recorded and how like and unlike samplings are to be distinguished 

[49|. In developing a successful taxonomy, there are requirements that should be observed for universal 

acceptance. In Section 2 we analyze previous taxonomies and highlight valuable aspects that are needed to 

create a complete useful taxonomy [57, 42]. These requirements include the following: 

Accepted - builds on previous work that is well accepted. 

Mutually exclusive - each attack can only be classified into one category, which prevents overlapping. 

Comprehensible - clear and concise information; able to be understood by experts and those less familiar. 

Complete/exhaustive - available categories are exhaustive within each classification, it is assumed to be 

complete. 

Unambiguous - involves clearly defined classes, with no doubt of which class an attack belongs. 

Repeatable - the classification of attack should be repeatable. 

Terms well defined - categories should be well defined, and those terms should consist of established termi- 

nology that is compliant within the security community 

Useful - the ability to be used and gain insight into a particular field of study, particularly those having great 

interest within the field of study. 

Applying these requirements for a complete taxonomy, we propose AVOIDIT. The AVOIDIT taxonomy 

provides, through application, a knowledge repository used by a defender to classify vulnerabilities that an 

attacker can use. Fig. I provides an overview of our proposed taxonomy, which provides details to support 

comprehending each attack classification and how a variety of attacks are represented in each category. 



2.2.1    Classification by Attack Vector 

When an attack takes place, there is a possibility it uses several vectors as a path to a full blown cyber attack. 

An attack vector is defined as a path by which an attacker can gain access to a host. This definition includes 

vulnerabilities, as it may require several vulnerabilities to launch a successful attack. In this section we list 

several vulnerabilities that are used to render a majority of attacks. 

1. Misconfiguration - An attacker can use a configuration flaw within a particular application to gain 

access to a network or personal computer to cause a variety of attacks. Settings that are improperly 

configured, usually default settings, are an easy target for an attacker to exploit [83]. 

2. Kernel Flaws - An attacker can use a kernel flaw within an operating system, which is the core code of 

an operating system, to gain certain privileges to exploit a vulnerability within the operating system. 

3. Buffer Overflow - Buffer overflow is caused when a piece of code does not adequately check for 

appropriate input length and the input value is not the size the program expects. Cowan |23] describes 

a buffer overflow when a buffer with weak or no bounds checking is populated with user supplied data. 

An attack can exploit a buffer overflow vulnerability leading to a possible exploitation of arbitrary 

code execution, often of privileges at the administrative level with the program running [83]. Buffer 

Overflow can occur in both stack and heap memory locations. A buffer overflow constitute majority 

of attacks [23]. A heap buffer overflow occurs in the heap data area, which is dynamically allocated 

by the application running [40] . 

4. Insufficient Input Validation - A program fails to validate the input sent to the program from a 

user 183]. An attacker can exploit an insufficient input validation vulnerability and inject arbitrary 

code, which commonly occurs within web applications. 

5. Symbolic Links - A file that points to another file [83]. An attacker can exploit a symbolic link 

vulnerability to point to a target file for which an operating system process has write permissions. 

6. File Descriptor - A file that uses numbers from a system to keep track of files, as opposed to file 

names [83]. Exploitation of a file descriptor vulnerability allows an attacker the possibility of gaining 

elevated privileges to program related files. 

7. Race Condition - Occurs when a program attempts to run a process and the object changes concur- 

rently between repeated references [9]. An exploitation of race condition vulnerabilities allows an 

attacker to gain elevated privileges while a program or process is in privilege mode [83]. 

8. Incorrect File/Directory Permission - An incorrect permission associated to a file or directory consists 

of not appropriately assigning users and processes [83|. Exploiting this vulnerability can allow a 

multitude of attacks to occur. 

9. Social Engineering - The process of using social interactions to acquire information about a victim, 

and or their computer system [17]. These types of attacks provide quick alternatives in disclosing 

information to assist an attack that in normal circumstances may not be available. 
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2.2.2    Classification by Operational Impact 

Classification by Operational Impact involves the ability for an attack to culminate and provide high level 

information known by security experts, as well those less familiar with cyber attacks. We provide a mutually 

exclusive list of operational impacts that can be categorized and concisely presented to the public. 

1. Misuse of Resources - An unauthorized use of IT resources |48|. We can extend this definition to 

consider any IT related function that require a certain privilege and those privileges are converted into 

an abusive action. 

2. User Compromise - A perpetrator gaining unauthorized use of user privileges on a host, as a user 

compromise [48]. 

3. Root Compromise - Gaining unauthorized privileges of an administrator on a particular host |48|. We 

shall extend this notion slightly by including any elevated privileges above a normal user including 

administrative and/or root level privileges to a particular system. 

4. Web Compromise - A website or web application using vulnerabilities to further an attack [48[. An 

attack can occur through a web compromise, usually via cross site scripting or sql injection. 

5. Installed Malware - By exploiting some vulnerability an attack can be launched via user installed 

malware, whether user installed or drive-by installation. Provos et al. |78| discussed the implications 

of installed malware allowing the adversary to gain full control of the compromised systems leading 

to the ex-filtration of sensitive information or installation of utilities that facilitate remote control of 

the host. 

6. Virus - A form of installed malware, where Hansman and Hunt [40| describes a virus as a piece 

of code that will attach itself through some form of infected files, which will self-replicate upon 

execution of program. Types of viruses include boot record infectors, file infectors, and macros. 

7. Spyware - A type of malware program that is covertly installed and infects its target by collecting 

information from a computing system without owner's consent [37, 27). The collected information is 

commonly used by attackers for financial gain, either identity theft or email marketing |37|. 

8. Trojan - A benign program to the user that allows unauthorized backdoor access to a compromised 

system [94|. A trojan is a common way to introduce a victim into a multitude of attacks. 

9. Worms - A self-replicating computer program. Worms do not require human intervention to propagate 

as it is a self-replicating program that spreads throughout the network [65]. Worms include mass 

mailing and network aware worms. 

10. Arbitrary Code Execution - Involves a malicious entity that gains control through some vulnerability 

injecting its own code to perform any operation the overall application has permission |26|. 
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11. Denial of Service - Denial of Service (DoS) is an attack to deny a victim access to a particular resource 

or service 118), and has become one of the major threats and rated among the hardest Internet security 

issues [26|. In this section we will provide details into the types of DoS attacks. 

12. Host Based - A Host based DoS aims at attacking a specific computer target within the configuration, 

operating system, or software of a host. These types of attacks usually involved resource hogs, aimed 

at consuming up all resources on a computer; crashers, which attempts to crash the host system |40). 

13. Network Based - A Network based DoS targets a complete network of computers to prevent the 

network of providing normal services |26|. Network based DoS usually occur in the form of flooding 

with packets |40), where the network's connectivity and bandwidth are the target |26|. 

14. Distributed - A distributed denial of service uses multiple attack vectors to obtain its goal (62). A 

Distributed Denial of Service (DDoS) is becoming more popular as an attacker's choice of DoS. 

2.2.3    Classification by Defense 

We extend previous attack taxonomy research to include a defense classification. Killourhy, et al. |47| state 

an attack taxonomy should be able to help the defender. In this section we highlight several strategies a 

defender can employ to remain vigilant in defending against attacks. We provide the possibility of using 

both mitigation and remediation when classifying attack defenses, as an attack could be first mitigated before 

a remediation can occur. 

1. Mitigation - Prior to vulnerability exploitation or during an attack, there are several steps a defender 

can use to minimize damage an attack has caused, or has the potential to cause. An example can 

involve an installation of a worm that propagate over the network, one instance could be to remove a 

set of hosts from the network and route traffic, while the administrator works on removal of the worm. 

Mitigation involves lessening the severity of the attack. 

2. Remove from Network - The ability of an administrator to remove infected hosts preventing further 

damage. As the example described above, a particular worm may reside in a network and begins 

propagation. 

3. Whitelisting - Whitelisting involves a list of permissible connections that are known to the defender. 

An attack could be directed at a particular software, which may reside on predetermined port. 

4. Reference Advisement - Notes provided by the defender to mitigate an attack, or a vulnerability/vendor 

database reference number used to alleviate a vulnerability or attack. 

5. Remediation - In the presence or prior to vulnerability exploitation, there are resolution steps that are 

available to a defender to prevent an attack. Remediation would involve taking the appropriate steps 

to correct the situation prior to or during an exploitation. 
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6. Patch System - Applying patches the vendor has released due to some vulnerability within software in 

use. When a vulnerability or attack is present, on various cases, a defender fails to utilize the patches 

a vendor provides. 

7. Correct Code - Steps within an organization to release a code patch to a specific application that will 

close the potential for an attacker to exploit. 

2.2.4 Classification by Informational Impact 

An attack on a targeted system has potential to impact sensitive information in various ways. Huttchinson 

1431 state information is the power and weapons at all strategic, tactic, and informational levels. A committed 

resource must be able defend information warfare strategies in an effort to protect themselves against theft, 

disruption, distortion, denial of service, or destruction of sensitive information assets 125]. In this section 

we classify an attacks impact, or the effect on information and define the criteria used. 

1. Distort - A distortion in information, usually when an attack has caused a modification of a file. When 

an attack involves distort, it is a change to data within a file, or modification of information from the 

victim [48]. 

2. Disrupt - A disruption in services, usually from a Denial of Service. When an attack involves disrupt, 

it is an access change, or removal of access to victim or to information |48|. 

3. Destruct - A destruction of information, usually when an attack has caused a deletion of files or 

removal of access. Destruct is the most malicious impact, as it involves the file deletion, or removal 

of information from the victim |48|. 

4. Disclosure - A disclosure of information, usually providing an attacker with a view of information they 

would normally not have access to. Kjaerland [481 describes disclosure as unauthorized disclosure of 

information, with the possibility of leading to other compromises. 

5. Discovery - To discover information not previously known. For example, when a scanning tool probes 

for information, the information discovered can be used to launch an attack on a particular target. 

2.2.5 Classification by Attack Target 

Various attacks target a variety of hosts, leaving the defender unknowingly susceptible to the next attack. 

1. Operating System (Kernel / User / Driver) - Responsible for the coordination of activities and the 

sharing of resources of a computer. An attack can be formulated to target vulnerabilities within a 

particular operating system. 

2. Network - Target a particular network or gain access through a vulnerability within a network or one 

of the network protocols [40|. 
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3. Local - An attack targeting a user's local computer. 

4. User - An attack against a user is an attack to retrieve a user's personal information. 

5. Application - An attack towards specific software. An application can be either client or server. 

A client application is software that is available to aid a user performing common tasks. A server 

application is software designed to serve as a host to multiple concurrent users. 

2.3    Taxonomy Comparison 

In this section we use the taxonomies described above to compare AVOIDIT with past computer attacks and 

vulnerabilities. This section will highlight how our cyber attack taxonomy successfully captures vulnera- 

bility attack information and provide a defender with countermeasures that can be efficient in preventing or 

assuaging successful attacks. 

2.3.1 SQL Slammer 

This section provides details into the SQL Slammer worm. Slammer was able to perform 55 million scans 

per second and compromised ninety percent of vulnerable hosts in 10 minutes [64]. Table I classifies the 

SQL Slammer worm. 

In Table 1, Lough's taxonomy is too general to provide useful information in describing the attack; Howard's 

taxonomy provides preliminary information. Hansman and Hunt's taxonomy is able capture more detail in 

comparison to Howard. Our taxonomy provides information on what caused the worm infection, and pos- 

sible defense strategies a network administrator can use to reduce the malware's ability to further propagate 

and cause damage. Using AVOIDIT, if the first insertion was alleviated, the Slammer worm would not be 

able to spread. 

2.3.2 Microsoft RPC Stack Overflow 

In 2008, a Windows Server service Remote Procedure Call (RPC) stack buffer overflow vulnerability |91, 

761 was exploited and is currently "in the wild". This RPC service provides print support and network pipe 

sharing were other users were able to access services over a network. The notable Conficker or Downadup 

attacks use these vulnerabilities to perform attacks on vulnerable systems. Table 2 classifies the RPC buffer 

overflow. 

Classifying the buffer overflow vulnerability using Lough or Howard's taxonomy, we are unable to view 

the details, and unable to aid in defending against the vulnerability exploit. Using Hansman and Hunt's 

taxonomy, we may have been able to classify the attack, but the variations of the vulnerability the various 

attacks exploited are not present.  With this particular vulnerability exploitation, you can view AVOIDIT 
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Table 1: SQL Slammer Attack Classification: Comparison of taxonomic classifications for the SQL Slam- 
mer worm. 

LOUGH 
Name Improper 

Validation 
Improper Exposure Improper Randomness Improper Deallocation 

Slammer X X 

HOWARD 
Name Tools Vulnerability Action Target Unauthorized Result 

Slammer Script Configuration, Design Prob, Modify Network Corruption of Information 

HANSMAN 
Name 1st Dimension 2nd Dimension 3rd Dimension 4th Dimension 

Slammer Network Aware 
Worm 

MS SQL Server 
2000 

CAN-2002-0649 Stack Buffer Overflow 
& UDP packet flooding DoS 

AVOIDIT 
Name Attack Vector Operational Impact Informational 

Impact 
Defense Target 

Slammer Misconfiguration Installed Malware: 
Network Aware 

Worm 

Discovery Mitigation: 
Whitelisting 

CAN-2002-0649 

Network 

Slammer Buffer Overflow Installed Malware: 
Network Aware 

Worm 

Distort Remediation: 
Patch System 

Application 

as being able to thoroughly classify the vulnerability, potential blended attacks, and attack variations that 

specifically exploited the Windows buffer overflow vulnerability. 

2.4    AVOIDIT Classification Structure 

In this section we were able to classify a multitude of vulnerabilities and attacks. AVOIDIT benefits from the 

ability of being able to classify attacks in a tree-like structure, providing the ability to classify the allusive 

blended attack. Predecessors [40, 571 state that providing a tree-like structure is a solution to solving the 

blended attack, but claim this particular structure can become unorganized. We provide our taxonomy in 

a tree-like structure to successfully classify common vulnerabilities and cyber attacks to provide defenders 

with the needed information to defend their networks. Table 3 provides insight into how a searchable schema 

can be obtain we classify attacks using a tree-like structure, which enable a searchable schema. By using a 

parent-child relationship, AVOIDIT is able to display how multi-staged attacks can be captured, classified, 

and disseminated. 



Table 2: MS RPC Stack Overflow Classification: A comparison of taxonomic classification for the Microsoft 
Remote Procedure Call (RPC) Overflow attack. 

LOUGH 
Name Improper 

Validation 
Improper Exposure Improper Randomness Improper Deallocation 

MS RPC 
Stack Overflow X X 

HOWARD 
Name 

MS RPC Stack Overflow    Script 

Tools     Vulnerability 
Design 

Action Target Unauthorized Result 

Modify     Process       Increased Access 

HANSMAN 
Name 1st Dimension 2nd Dimension 3rd Dimension 4th Dimension 

MS RPC 
Stack Overflow 

Stack 
Buffer Overflow 

Windows Server CVE-2008-4250 Corruption of 
Information 

AVOIDIT 
Name Attack Vector Operational 

Impact 
Informational 

Impact 
Defense Target 

MS RPC Buffer Overflow: Installed Distort Mitigation: OS: 
Stack Overflow Stack Malware:ACE RA: VU#827267 

Remediation: 
Patch System 

Windows 
Server 

Gimmiv.A Buffer Overflow: Installed Disclosure Mitigation: OS: 
Stack Malware:Trojan RA: Microsoft 

Remediation: 
Patch System 

Windows 
Server 

Conticker Buffer Overflow: Installed Disrupt Mitigation: OS: 
Stack Malware:Worm RA: Microsoft 

Remediation: 
Patch System 

Windows 
Server, 

2000, XP 

2.5    AVOIDIT Applied in a Network 

In this section we show how AVOIDIT can be used within cyber security to support a defender against 

malicious attackers. 

AVOIDIT is intended to be used in multiple aspects of a network defense policy. It can be used to store event 

notifications within a database to educate administrators of attack frequency. The network administrator 

can also use an AVOIDIT organized knowledge repository in order to locate strategies that are appropriate 

for securing their network against vulnerabilities that can be exploited and used for unauthorized access. 

AVOIDIT used in a network defense strategy can improve the overall level of security. Our taxonomy can be 

used by applications that can offer a multitude of functions. The most obvious of these is that the taxonomy 

can be used to provide a defender with information related to the commonality, frequency, and vendor 

response pertaining to an event in which a vulnerability was exploited. This information will then be used 

to identify and implement defense measures. Previous taxonomies in Section 2 lack the structure of useful 
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Table 3: AVOIDIT attack classification structure for multiple attacks, including multi-stage blended attacks. 

ID Parent Name Attack 
Vector 

Operational 
Impact 

Defense Informational 
Impact 

Target 

001 Slammer Misconfig Mai ware: 
Network 
Aware 
Worm 

Mitigation: 
Whitelisting 
Remediation: 
Patch System 

Discovery Network 

002 001 Slammer Buffer 
Overflow 

Mai ware: 
Network 
Aware 
Worm 

Remediation: 
Patch System 

Distort Application 

003 Zotob Buffer 
Overflow 

Malware: 
Worm 

Remediation: 
Patch System 

Distort OS 

004 003 Zotob Buffer 
Overflow 

Malware: 
Worm 

Remediation: 
Patch System 

Distort Local 

008 SamyXSS Design Flaw Web 
Compro- 

mise 

Remediation: 
Correct Code 

Disrupt User 

009 Debian 
Admin 

Kernel Flaw Root 
Compro- 

mise 

Remediation: 
Patch System 

Disclosure OS 

010 009 Debian 
Admin 

Kernel Flaw DoS Mitigation: 
RA 

Distort OS 

Oil Yamanner Social 
Engineering 

Web 
Compro- 

mise 

Mitigation: 
RA 

Disclosure Application: 
Server: 
Email 

012 Oil Yamanner Design Flaw Malware: 
Mailing 
Worm 

Mitigation: 
RA 

Disrupt User 

013 MS RFC 
Overflow 

Buffer 
Overflow 

Malware: 
ACE 

Mitigation: 
RA: 

VU#827267 
Remediation: 
Patch System 

Distort OS: 
Windows 

Server 

014 013 Gimmiv.A Buffer 
Overflow 

Malware: 
Trojan 

Mitigation: 
RA: 

Microsoft 
Remediation: 
Patch System 

Disclosure OS: 
Windows 

Server 

015 013 Conficker Buffer 
Overflow 

Malware: 
Worm 

Mitigation: 
RA: 

Microsoft 
Remediation: 
Patch System 

Disrupt OS: 
Windows 

Server 
2000, XP 
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information to classify attacks through vulnerabilities that can be used in an application to assist a defender 

against an attack. Our taxonomy provides a more apparent approach to educate the defender on possible 

cyber attacks using vulnerability details. AVOIDIT will be used in a future game theoretic defense system 

to capture vulnerability information to provide a network administrator with a solution when defending 

against cyber attacks [291. Until now, previous attack taxonomies have not been applied in a defense model, 

thus through application, our taxonomy presents a better approach in capturing and disseminating valuable 

information in defending a network against cyber attacks. 

2.6    AVOIDIT Limitations 

Attacks have become increasingly present in the cyber world, and being able to provide the ability to prevent 

all attacks is extremely difficult. In this section we will highlight some of the limitations of AVOIDIT. 

2.6.1 Lack of Defense Strategies 

The defense strategies in our taxonomy present a defender with an appropriate starting point to mitigate 

and/or remediate an attack. The plausible defenses are enormous, so the proposed taxonomy provides a 

high level approach to cyber defense. Although AVOIDIT is extensible, more research is needed to provide 

an exhaustive list of possible defense strategies for each vulnerability exploited. 

2.6.2 Physical Attack Omission 

Physical attacks are an important aspect in achieving security. While it is necessary to understand physical 

attacks, our proposed taxonomy focuses on cyber attacks. Further research can be done to include the 

physical aspect of cyber security, which may include the end hosts of an attack. 

2.6.3 Summary 

This section introduces a cyber attack taxonomy that enhances the cyber security industry. AVOIDIT will 

classify attacks by attack vectors, operational impact, defense, informational impact, and target. This clas- 

sification scheme will aid a defender in protecting their network by providing vital attack information. It is 

presented in a tree-like structure to neatly classify common vulnerabilities used to launch cyber attacks. 

We are aware of the possibility of new attack manifestation, therefore AVOIDIT could be extended to in- 

clude new categories within each classification. AVOIDIT will provide a defender with the appropriate 

information to make an educated decision in defending against cyber attacks. Creative approaches to de- 

fending attacks will become available and providing an extensible taxonomy able to capture new defenses 

is imperative to defense. We believe AVOIDIT provides a foundation for the cyber security community and 

provide the ability to continuously grow as attacks and defenses become more sophisticated. In future work, 

to build a Game Theoretic Defense System, we will investigate the applicability of AVOIDIT in determining 

the action space of the attacker [29]. 
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3    Basics of Game Theory 

This section identifies the premise of game theory to aid the understanding of the games referred later in 

this report. For a detailed introduction to game theory refer A Course in Game Theory [71 ]. Game theory 

describes multi-person decision scenarios as games where each player chooses actions which result in the 

best possible rewards for self, while anticipating the rational actions from other players. 

A player is the basic entity of a game who makes decisions and then performs actions. A game is a precise 

description of the strategic interaction that includes the constraints of, and payoffs for, actions that the 

players can take, but says nothing about what actions they actually take. A solution concept is a systematic 

description of how the game will be played by employing the best possible strategies and what the outcomes 

might be. 

The consequence function associates a consequence with each action the decision makers take. A preference 

relation is a complete relation on the set of consequences which model the preference of each player in the 

game. A strategy for a player is a complete plan of actions in all possible situations throughout the game. 

If the strategy specifies to take a unique action in a situation then it is called a pure strategy. If the plan 

specifies a probability distribution for all possible actions in a situation then the strategy is referred to as a 

mixed strategy. 

A Nash equilibrium is a solution concept that describes a steady state condition of the game; no player 

would prefer to change his strategy as that would lower his payoffs given that all other players are adhering 

to the prescribed strategy. This solution concept only specifies the steady state but does not specify how 

that steady state is reached in the game. The Nash equilibrium is the most famous equilibrium, even though 

there are many other solution concepts used occasionally. This information will be used to define games 

that have relevant features for representing network security problems. 

3.1    Definitions 

Game 

A description of the strategic interaction between opposing, or co-operating, interests where the con- 

straints and payoff for actions are taken into consideration. 

Player 

A basic entity in a game that is tasked with making choices for actions.  A player can represent a 

person, machine, or group of persons within a game. 

Action 

An action constitutes a move in the given game. 

Payoff 

The positive or negative reward to a player for a given action within the game. 
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Strategy 

Plan of action within the game that a given player can take during game play. 

Perfect Information Game 

A game in which each player is aware of the moves of all other players that have already taken 

place. Examples of perfect information games are: chess, tic-tac-toe, and go. A game where at least 

one player is not aware of the moves of at least one other player that have taken place is called an 

imperfect information game. 

Complete Information Game 

This is a game in which every player knows both the structure of the game and the objective functions 

of all players in the game, but not necessarily the actions. This term is often confused with that of 

perfect information games but is distinct in the fact that it does not take into account the actions each 

player have already taken. Incomplete information games are those in which at least one player is 

unaware of the structure of the game or the objective function for at least one of the other players. 

Bayesian Game 

A game in which information about the strategies and payoff for other players is incomplete and a 

player assigns a 'type' to other players at the onset of the game. Such games are labeled Bayesian 

games due to the use of Bayesian analysis in predicting the outcome. 

Static/Strategic Game 

A one-shot game in which each player chooses his plan of action and all players' decisions are made 

simultaneously. This means when choosing a plan of action each player is not informed of the plan of 

action chosen by any other player. In the rest of this article, this class of game is referred to as 'static 

game'. 

Dynamic/Extensive Game 

A game with more than one stages in each of which the players can consider their action |711. It can 

be considered as a sequential structure of the decision making problems encountered by the players 

in a static game. The sequences of the game can be either finite, or infinite. In the rest of this article, 

this class of game is referred to as 'dynamic game'. 

Stochastic Game 

A game that involves probabilistic transitions through several states of the system. The game pro- 

gresses as a sequence of states. The game begins with a start state; the players choose actions and 

receives a payoff that depend on the current state of the game, and then the game transitions into a 

new state with a probability based upon players' actions and the current state. 
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4    Game Theory as Applied to Network Security 

The weakness of the traditional network security solutions is that they lack a quantitative decision frame- 

work. To this end, a few groups of researchers have started advocating the utilization of game theoretic 

approaches. As game theory deals with problems where multiple players with contradictory objectives 

compete with each other, it can provide us with a mathematical framework for analysis and modeling net- 

work security problems. As an example, a network administrator and an attacker can be viewed as two 

competing players participating in a game. In addition, game theory has the capability of examining hun- 

dreds of thousands of possible scenarios before taking the best action; hence, it can sophisticate the decision 

process of the network administrator to a large extent. As a result, several game theoretic approaches have 

recently been proposed to address network security issues. 

We survey the existing game theoretic solutions which are designed to enhance network security and present 

a taxonomy for classifying them. Highlighting the basic game type used in the defense mechanisms, while 

abstracting detailed differences, this taxonomy provides the reader with a global view of the problem and 

solution space. We do not advocate any specific defense game, rather the main purpose is to provide the 

reader with the current solution possibilities. 

The rest of this section is organized as follows. Section 4.1 explains how network security problems can be 

modeled as a game. Section 4.2 classifies the current state of research and proposes a taxonomy. Finally, 

Section 4.3 and 4.4 highlight the differences between this report and other surveys in the field, and provide 

a summary. 

4.1    Information Warfare as a Game 

Global networks continue to undergo dramatic changes resulting in ever-increasing network size, intercon- 

nectivity, and accessibility, and a consequent increase in its vulnerability. Several recent Federal policy 

documents have emphasized the importance of cyber security to the welfare of modern society [ 14, 22|. The 

President's National Strategy to Secure Cyber Space [ I4| describes the priorities for response, reduction 

of threats and vulnerabilities, awareness and training, and national security and international cooperation. 

Cyber Security: A Crisis of Prioritization [22] describes the need for certain technologies for cyber security. 

Security should be an integral part of advanced hardware and software from the beginning, as described by 

Sun Microsystems, Cisco Systems, and Microsoft at the 2006 RSA Conference. 

Next-generation information infrastructure must robustly provide end-to-end connectivity among comput- 

ers, mobile devices, wireless sensors, instruments, etc. Cyber-security is an essential component of infor- 

mation and telecommunications, which impacts all of the other critical US infrastructures [31 ]. However, 

traditional cyber-security methods involve a never-ending cycle of detection and response to new vulnera- 

bilities and threats. It is recognized that this patches-on-patches approach is a short fix and attests to the 

failure of the present cyber-security paradigm, and points to the need for a new and bold approach. The 

US-CERT |92) web site has currently more than 20,000 vulnerabilities (increasing by 50 to 60 per month), 

implying a worldwide cost more than 1 trillion dollar. The open web application security project also lists 
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top ten vulnerabilities of the year for web-based applications. "Build Security In" (BSI) [72| is a project 

of the Strategic Initiatives Branch of the National Cyber Security Division (NCSD) of the US Department 

of Homeland Security is for use by software developers, who want information and practical guidance on 

producing secure and reliable software. NSA has an effort on high-assurance computing platforms. The 

Trusted Computing Group [36| has an ongoing effort. Microsoft has an effort on next-generation secure 

computing |60|. 

In future warfare, cyberspace will play a major role where no one is guaranteed to have information dom- 

inance in terms of intelligence and accessibility. As a result, a game-theoretic approach of collaboration 

(carrot) and compelling (counter-) moves (stick) need to be played efficiently. This notion is not unlike the 

mutually assured destruction (MAD) of nuclear warfare. The question then becomes: How do we construct 

such a game theoretic approach in cyberspace? 

In general, a game-theoretic approach works with at least two players. A player's success in making choices 

depends on the choices of others. In game theory, players are pitted against each other taking turns sequen- 

tially to maximize their gain in an attempt to achieve their ultimate goal [ 11. In the field of cyber security, 

game theory has been used to capture the nature of cyber conflict. The attacker's decision strategies are 

closely related to those by the defender and vice versa. Cyber-security then is modeled by at least two 

intelligent agents interacting in an attempt to maximize their intended objectives. 

Different techniques available in game theory can be utilized to perform tactical analysis of the options of 

cyber threat produced either by a single attacker or by an organized group. A key concept of game theory 

is the ability to examine the huge number of possible threat scenarios in the cyber system (38, 39|. Game 

theory can also provide methods for suggesting several probable actions along with the predicted outcome 

to control future threats. Computers can analyze all of the combinations and permutations to find exceptions 

in general rules, in contrast to humans who are very prone to overlooking possibilities. This approach allows 

identification of the what-if scenarios, which the human analyst may not have considered. 

4.2    Taxonomy: Classification of Current Research 

Figure 1: Classification of games 

Figure I illustrates the basic classification of game theory. The existing game-theoretic research as applied 

to network security falls under non-cooperative games. As such, this report does not further expand upon 

'cooperative games'. Figure 2 illustrates the classification of static games and lists the existing research 

works (related to network security) falling under each class. Figure 3 does the same for dynamic games. 
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complete and Imperfect Information 

[23] -Liu 

[24]-Liu 

Figure 2: Classification of Static Games: Each rectangular leaf node lists the research works which fall 
under the corresponding category. Each research work is represented by the reference number and the first 
author name. 

Section 4.2.1 discusses existing works involving static games while Section 4.2.2 deals with existing works 

involving dynamic games. Section 4.2.3 discusses a few other works which do not directly fall under these 

classes. Finally, Section 4.2.4 presents some directions for future research. 

4.2.1    Static games 

Since a static game is a one-shot game, by definition all static games are of imperfect information. According 

to the completeness of information, static games can be classified into two sub-classes as listed below. We 

briefly discuss the existing research works which fall under each sub-class of static games. 

4.2.1.1 Complete imperfect information 

Jormokka et al. [45] introduced a few examples of static games with complete information where each 

example represents an information warfare scenario. For each scenario the authors found the best strategy 

of the players in a quantitative form. In particular, they investigated if more than one Nash equilibria exist 

and if so, then which one is most likely to appear as the outcome given the players' strategies. These 

examples show that depending on the scenario the players could get the benefit of a bold strategy or a mixed 

strategy. 

Carin et al. [ I5| presented a computational approach to quantitative risk assessment for investment efficient 

strategies in cyber security. The focus of this work was how to protect the critical intellectual property in 

private and public sectors assuming the possibility of reverse engineering attacks. The authors proposed an 

attack/protect economic model cast in a game theoretic context. 

4.2.1.2 Incomplete imperfect information 

Liu et al. |54| presented a methodology to model the interactions between a DDoS attacker and the network 

administrator. This approach observed that the ability to model and infer attacker intent, objectives, and 

strategies (AIOS) is important as it can lead to effective risk assessment and harm prediction. An incentive- 

based game-theoretic model to infer AIOS was discussed in this work. A few bandwidth parameters were 
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used as the metric to measure the impact of the attack and the countermeasure, which in turn measures the 

attacker's, and defender's, incentive. The work also observed that the best game model to choose depends 

on the degree of accuracy of the employed IDS and the degree of correlation among the attack steps. The 

work reported simulation results involving game plays following the Bayesian model while the simulation 

experiment was performed on ns-2. The topology considered in the simulation experiment consists of 64 

source hosts connected to one victim machine via 4 levels of routers. Each router is capable of employing 

the pushback mechanism as part of the defense strategy. A set of Nash equilibrium strategies were computed 

via the simulation. 

Liu et al. |56| focused on the intrusion detection problem in mobile ad-hoc networks. Their two-player 

game model is based on a Bayesian formulation and they analyzed the existence of Nash equilibria in static 

scenario. The defender updates his prior beliefs about the opponent based on new observations. This work 

investigated the Bayesian Nash Equilibria (BNE) in the static model. The authors also presented some 

results from the experiments performed on the ns-2 simulator. 

4.2.2    Dynamic games 

A dynamic game can be either of complete or incomplete information. Moreover, a dynamic game may 

involve perfect or imperfect information. So, there are four sub-classes of dynamic games as listed below. 

For each sub-class of dynamic games, we briefly discuss the existing research works which fall under the 

corresponding sub-class. 

CoK^iete   ud   Perfect   Ir.£or»iti-Ms 1     ! Complete   and   Imperfect   Itfonutisc !     (incomplete   and   Perfect   Ir.fonatiar.   I     [Incomplete   ir.5   Imperfect   In f ormati or. J 

[25]    -   Lye 
[26]    -   Xiaolin 
[31]    "   Wguyen 

[3]       "   Aip-an 
[20]    -   Hguyen 

"S 
(11] - Chen 
[31]   - Pitch* 
14]     - Alpean 
[<]     " Bloem 

[2]     -  Alpcan 
[40]   -  You 

Figure 3: Classification of Dynamic Games: Each rectangular leaf node lists the research works which fall 
under the corresponding category. Each research work is represented by the reference number and the first 
author name. 

4.2.2.1    Complete perfect information 

Lye et al. |58| proposed a game model for the security of a computer network. In this work, an enterprise 

network was envisioned as a graph of 4 nodes (web server, file server, work station and external world) 

along with the traffic state for all the links. It is a two-player (administrator, attacker), stochastic, general- 

sum game and the authors focused on 3 attack scenarios namely, defaced website, denial-of-service, and 

stealing confidential data. The game was described from the point of view of both players. A formal model 

defined the game as a 7-tuple— the set of network states, the action set for each player, the state transition 

function, the reward function and a discount factor. In particular, this work considered a stochastic game 
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involving 18 network states and 3 actions for each player at each state. The state transition probabilities and 

the reward matrices are assigned using the domain knowledge. With different initial conditions a set of Nash 

Equilibria were calculated using a non-linear program in Matlab. 

Xiaolin et al. |98| proposed a Markov game theory based model for risk assessment of network information 

system considering the security status of both present and future. They identified that threats acting on 

vulnerability can induce risk and the risk will be larger and larger by threat spreading. On the other hand, 

the risk will be smaller and smaller by the system administrator's repairing the vulnerability. Thus, they 

established a game of threats and vulnerabilities. Essentially, the experiment involves a game of complete 

and perfect information with two players. Authors formulated a function to capture the damage and used it 

to assess the risk. Using the damage function the system administrator would select the repair strategy which 

minimizes the maximum damage. To evaluate their model they constructed a risk assessment platform with 

four subsystems which are Malicious code Detection Subsystem, Vulnerability Detection Subsystem, Asset 

Detection Subsystem and Risk Assessment Subsystem. They used Trojan.Mybot-6307 as a threat, and three 

assets to define states. Their results are similar or better than the traditional assessment model like Fault Tree 

Analysis (FTA) because they effectively incorporated the potential risk also. They came up with a repair 

table of vulnerability states and threat states. They claimed that the model also leads to the best system 

repair scheme. 

In Nguyen et al.'s |68] model, an attacker and the network administrator participate in a two-player zero- 

sum stochastic game. This work assumed that the network consists of a set of interdependent nodes whose 

security assets and vulnerabilities are correlated. It utilized the concept of linear influence networks |63] and 

modeled the interdependency among nodes by two weighted directed graphs, one signifying the relationship 

of security assets and the other denoting vulnerability correlation among the nodes. This research presented 

one numerical example considering a small network of three nodes to explain how to compute the optimal 

strategies of the players. 

4.2.2.2    Complete imperfect information 

Alpcan et al. |4] modeled the interaction between malicious attackers to a system and the IDS using a 

stochastic (Markov) game. They captured the operation of the IDS sensor system using a finite-state Markov 

chain, and considered three different information structures: (a) the players have full information about the 

sensor system characteristics and the opponents, (b) the attacker has no information about the sensor system 

characteristics, and (c) each player has only information about his own costs, past actions, and past states. A 

few illustrative examples and numerical analysis were presented for these three cases. Tools such as value 

iterations to solve Markov decision processes (MDP) |8], minimax-Q [53], and naive Q-learning |8| were 

used to find the best strategies of the players. 

Nguyen et al. [67] viewed the network security problem as a sequence of nonzero-sum games played by 

an attacker and a defender. This game model, called 'fictitious play (FP)', conservatively considers that the 

players cannot make perfect observations of each other's previous actions. This work studied the impact of 

the error probabilities associated with the sensor system on the Nash equilibrium strategies of the players 

considering two scenarios— (a) each player is aware of these error probabilities, and (b) neither player 
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knows these error probabilities. Both classical and stochastic FP games are investigated via simulation. 

4.2.2.3    Incomplete perfect information 

Chen [20| in his doctoral dissertation used game theoretic model to design the response for the importance- 

scanning Internet worm attack. The main idea is that defenders can choose how to deploy an application, 

that is the group distribution, when it is introduced to Internet to minimize the worm propagation speed. 

The attacker can choose the optimal group scanning distribution to maximize the infection speed. Thus a 

game would be played between the attacker and the defender. The attacker should choose so as to maximize 

the minimum speed of worm propagation, while defender wants to minimize the maximum speed of worm 

propagation. By framing the problem this way it turns out to be a zero sum game and a min-max problem. 

The optimal solution for this problem is that defender should deploy the application uniformly in the entire 

IP-address space or in each enterprise network, so that the best strategy that the attacker exploits is equivalent 

to random scanning strategy. This work gave a game theoretical framework to design the locations of 

vulnerable and high value hosts over a network. 

Patcha et al. |75| proposed a game theoretic approach to model intrusion detection in mobile ad-hoc net- 

works. The authors viewed intrusion detection as a game played between the attacker node and the IDS 

hosted on the target node. The objective of the attacker is to send a malicious message with the intention 

of attacking the target node. The modeled game is a basic signaling game which falls under the domain of 

multi-stage dynamic non-cooperative game. 

Alpcan et al. |5| investigated the problem of Nash Equilibrium Design for quite a general class of games 

from an optimization and control theoretic perspective. The work is theoretical and the analysis is general 

though aimed at information networks. They restricted their treatment to a class of games where players 

do not manipulate the game by deceiving the system designer and where utility functions accurately reflect 

user preferences. They further discussed the games with incomplete information with two objective func- 

tions: Quality of service (QoS)-based and utility maximization. They concluded that though the tragedy of 

commons or price of anarchy is unavoidable in pure games, it is circumvented altogether when additional 

mechanism such as "pricing" are included. They explored the pricing dynamics in different conditions. They 

inferred that "loss of efficiency" is not an inherent feature of a broad class of games with built-in pricing 

systems, but merely a misconception that often stems from arbitrary choice of game parameters. Finally, 

they give a brief overview of Nash Equilibrium dynamic control. They focused on how long does the game 

approach Nash equilibrium when many players are trying to solve it in a distributed way. They suggested a 

feedback control system approach with pricing as a control input to make the system robust and to control 

the system's progress and investigated system's controllability in general. 

Bloem et al. 110) modeled intrusion response as a resource allocation problem based on game theory. A 

cost is associated with attacks and responses. This problem, including imperfections in the sensor outputs, 

was first modeled as a continuous game. The strategies are discretized both in time and intensity of actions, 

which eventually leads to a discretized model. The reaction functions uniquely minimize the strictly con- 

vex cost functions. After discretization, this becomes a constrained integer optimization problem. To solve 

this they introduced their dynamic algorithm, Automatic or Administrator Response algorithm (AOAR). 
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They classified attacks into those resembling previous attacks and those that do not, and many such intuitive 

classes with Kohonen self-organizing maps, a neural net, and the response cost is minimized. The simula- 

tions captured variation in vulnerability, value and cost of actions. Their results showed system performs 

improves after using AOAR. 

Though majority of Liu et al.'s [54} approaches fall under static games with incomplete and imperfect 

information (Section 4.2.1.2), one of their approaches falls under this category. 

4.2.2.4    Incomplete imperfect information 

Alpcan et al. [3] modeled the interaction of an attacker and the network administrator as a repeated game 

with 'finite steps' or 'infinite steps'. This work assumed that the sensor system which is deployed to detect 

the attacks is imperfect and considered the sensor system as a third 'fictitious' player similar to the 'nature' 

player in standard game theory. It found the Nash equilibrium in a repeated game via simulation considering 

a simple scenario with three specific attacks. The Nash equilibrium strategies were computed assuming 

simple cost functions for the players. 

You et al. 11011 described how to model the network security scenario considering the interaction between 

the hacker and the defender as a two player, zero sum game. It gave a taxonomy of relevant game theory 

and network security terms and suggested a correlation between them. They pointed out at the utility of 

Nash and Bayesian Equilibria in representing the concepts to predict behavior and analyzed the interaction 

between the attacker and the defender. They gave a list of game theory terms that are relevant in the network 

security scenario and explained them. They explained how min max theorem for this game is formulated. 

They concluded by suggesting that to solve this problem linear algorithms would be appropriate. 

The research reported in |4|, [67| and [75] which are described under other classes of games also contain 

additional approaches that fall under this class of game. 

4.2.3    Other work 

Burszteinetal. 113| presented a model for evaluating the plausibility of successful attacks on a given network 

with interdependent files and services. This work provided a logic model that accounts for the time needed 

to attack, crash, or patch network systems. Rather than providing a game theoretic model, the work used 

the given time and topology constraints to determine if an attack, or defense, would be successful. The 

example presented described a high-availability web server configuration with interdependent elements and 

considered the strategic actions of the attacker as well as the defender. 

Sun et al. |90| analyzed information security problem in the mobile electronic commerce chain. They 

claimed that the application of game theory in information safety is based on the hypothesis of player's 

perfect rationality, while in reality, the main body of information security only has the bounded rationality, 

which is just the assumption of Evolutionary Game theory. They introduced the penalty parameter in the 

problem if an organization in the mobile electronic commerce chain does not invest in information security. 

They calculated replicator dynamics of this game. They analyzed Evolutionary Stable strategy to get the 

results which formulate that the pay off to the organizations for investing is higher than not investing. This 
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is an application of evolutionary game theory to the investment strategy in the network security to obtain the 

best security pay off. 

Sun et al. |89) used game theory to make the analysis and put forward strategy suggestions for defender 

organization to invest in information security. It is concerned about management and not the technology 

of the information security. They formulated the problem of two organizations investing in the security, 

with parameters such as for investment, security risk and disasters. They presented a pay off matrix. They 

did the Nash Equilibrium analysis for both pure and mixed strategy and showed them to be consistent. To 

make the investing a rational option they introduced a penalty parameter associated with not investing. They 

concluded by presenting an argument for encouraging organizations the investment in information security. 

4.2.4    Discussion: scope of future research 

Many of the current game-theoretic security approaches are based on either static game models [54, 56| or 

games with perfect information |58, 98, 5, 10| or games with complete information |68|. However, in reality 

a network administrator often faces a dynamic game with incomplete and imperfect information against the 

attacker. Some of the current models involving dynamic game with incomplete and imperfect information 

are specific to wireless networks [75] while a few others |3, 101 ] do not consider a realistic attack scenario. 

In particular, some of the limitations of the present research are: (a) Current stochastic game models [58[ 

only consider perfect information and assume that the defender is always able to detect attacks; (b) Current 

stochastic game models [581 assume that the state transition probabilities are fixed before the game starts 

and these probabilities can be computed from the domain knowledge and past statistics; (c) Current game 

models assume that the players' actions are synchronous, which is not always realistic; (d) Most models are 

not scalable with the size and complexity of the system under consideration. 

4.3    Related work 

This section briefly discusses the existing body of other research related to our survey topic, and mentions 

how the existing work differs from our work. It also discusses a few research works which focus on the 

taxonomy of network attacks and cyber incidents. It is to be noted that good understanding of the attack 

taxonomy is a prerequisite to design a countermeasure. 

Hamilton et al. [39] outlined the areas of game theory which are relevant to information warfare. The paper 

analyzed a few scenarios suggesting several potential courses of actions (COA) with predicted outcomes 

and what-if scenarios. Alpha-beta, alpha-beta star, and beta pruning with min-max search are suggested 

approaches. Hill climbing algorithm was suggested for predicting the opponent moves. In the domain of 

checkers, a linear programming technique using pattern recognition was cited as finding the optimal weights 

in a followup pass after hill climbing. Automatic tuning of evaluation functions by the chess program, Deep- 

Blue is highlighted. They concluded with speculating about great possibilities in applying game theory to 

information warfare. Hamilton et al.'s work focusses on a motivating example to illustrate the use of game 

theory in network security problems while we provide a taxonomy of the existing game-theoretic solutions. 
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Hamilton et al. |38| identified the following seven challenges in applying game theory to the domain of 

information warfare: (i) There is a limited database of relevant games played by real players, (ii) Both the 

attacker and the defender can launch multiple moves simultaneously, (iii) Players can take as long as they 

want to make moves, (iv) The defender may not be able to correctly able to identify the end goal of the 

opponent, (v) At each step the flow of the game may change so that the known legal moves, both in number 

and kind, may change for each player, (vi) The defender may find it hard to keep track of any possible 

change in the opponents resources and also his end goals, (vii) It is hard to define precisely the timing for 

move and state updates. The authors expected that these challenges could be addressed with some non-trivial 

breakthroughs in the research. We investigate how the existing game-theoretic solutions meet some of the 

above challenges. 

Kjaerland |481 introduced existing body of research work related to computer crime profiling and proposed 

a taxonomy of cyber-intrusions, which provides insight into cyber-criminals and victims. In this research, 

Kjaerland focused on reported cyber intrusions reported from CERT. These attacks were analyzed using 

facet theory and multidimensional scaling (MDS) with Method of Operation, Target, Source, and Impact. 

Each facet contains a number of elements, each is mutually exclusive and elements exhaustively describe 

the facet. Kjaerland concluded the paper with comparing the incidents of commercial versus government 

incidents. 

Hansman and Hunt [40] proposed a taxonomy consisting of four unique dimensions that provide a holistic 

classification that covers network and computer attacks, providing assistance in improving computer and 

network security as well as consistency in language with attack description. The first dimension is attack 

vector, which is used to categorize the attack into an attack class. The second dimension allows for the 

classification of attack targets, which can be classified to specific targets (e.g., OS:Linux:RedHat6.0). The 

third dimension consists of the vulnerability classification and the attack uses (e.g., CVE/CERT). The fourth 

and final dimension highlight the potential payload or effects involved (e.g., File Deletion). Within each 

dimension various levels of information are provided to successfully classify and supply attack details. 

Hansman and Hunt provided examples to conclude the proposed taxonomy is general to categorize attacks 

and mentioned the need of future work to improve classifying blended attacks. There are several research 

works.e.g. [46|, |64], which study network attacks. 

Chakrabarti et al. [ 19| focused on the Internet and its infrastructure as being the basis for highlighting at- 

tacks and security. Where majority of research focused on securing the data being transferred, this research 

discussed attacks on the infrastructure which can lead to considerable destruction due to different Internet 

infrastructure components having various trust relationships with one another. Chakrabarti et al. catego- 

rized possible Internet infrastructure attacks, identified attacks within each category, solutions within each 

category, and presented guidelines for less researched areas. In their taxonomy of attacks they provided four 

categories on Internet infrastructure attacks (DNS hacking, Route table poisoning, Packet mistreatment, and 

Denial of Service). They used the categories to develop a comprehensive understanding of the security 

threats. 

Mirkovic and Reihner [62] presented a taxonomy of Distributed Denial of Services (DDoS) attack and 
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defense mechanisms in aim to classify attacks and defense strategies. This work highlighted attack com- 

monalities and important features of attack strategies. These strategies are vital in dictating the design of 

countermeasures. With focus on DDoS attacks, Mirkovic and Reihner created a taxonomy to examine the 

exploitation, the characteristics, and the victim impact of the attack. The taxonomy of DDoS attacks was 

categorized by Degree of Automation, Exploited Weakness, Source Address Validity, Attack Rate Dynam- 

ics, Possibility of Characterization, Persistent Agent Set, Victim Type, and Impact on Victim. Highlighting 

challenges defending against DDoS attacks, Mirkovic and Reihner developed a taxonomy of DDoS de- 

fenses consisting of Activity Level, Cooperation Degree, and Deployment Location. Mirkovic and Reihner 

concluded with the proposed taxonomies to provide communication of threats and related countermeasures 

aiming to foster cooperation between researchers for discussing solutions. 

4.4    Summary 

Hackers activities have significantly increased in cyber space, and have been causing damage by exploiting 

weaknesses in information infrastructure. Considerable efforts are continuously being made by the research 

community for the last two decades to secure networks and associated devices. Recently, researchers have 

been exploring the applicability of game theoretic approaches to address cyber security problems and have 

proposed a handful of competing solutions. Game theory offers promising perspectives, insights, and models 

to address the ever changing security threats in cyber space. This survey highlights important game theoretic 

approaches and their applications to network security and outlines possible directions for future research. 

It is to be noted that classes in the taxonomy could be divided into more detailed levels. It is obvious that 

new classes may need to be introduced in the taxonomy after new defense mechanisms are proposed in the 

future. 
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5    Stochastic Game Models with Realistic Assumptions 

Prior stochastic game models for network security assume that players have perfect information, which is a 

strong assumption. We design a stochastic game model in which players may have imperfect information. 

In addition, prior body of work related to network security does not present an algorithm to compute the 

equilibrium of a general-sum stochastic game. We explore the current game theory literature to find such an 

algorithm and discover that only recently game theoreticians have proposed one such algorithm. We analyze 

this algorithm, verify the analytical results via simulation, and find that this algorithm has many limitations. 

Below we report our findings along the above two research directions: First, in Section 5.1, we discuss our 

imperfect information stochastic game model, and then, in Section 5.2, we discuss our research towards 

solving a general-sum stochastic game. 

5.1    Considering Imperfect Information 

To model attacks and defense mechanisms, a stochastic game model has been proposed in the literature 

|58, 59, 4|. The state of the game probabilistically changes depending on actions taken by the players (i.e., 

type of attacks and defender's response) and the system configurations. During each state transition, each 

player gets a payoff or incurs some cost (negative payoff). Techniques exist by which a player can determine 

the best strategy to get the highest overall payoff considering all of the possible strategies of the adversary. 

Game theoreticians formulate the solution concept of a stochastic game by the notion of Nash equilibrium, 

and have already provided the analysis indicating the existence of the equilibrium |28|. 

As stated, the prior stochastic game models for network security [58, 59) assume that the players have perfect 

information about the current state of the game, which implies that the defender is always able to detect an 

attack and the attacker is always aware of the employed defense mechanism. In real systems, a player uses 

a sensor (e.g., the defender's sensor can be a part of the Intrusion Detection System (IDS)) to observe the 

current status of the system to decide the strategy. It is widely believed that no real sensor can perfectly read 

the environment, i.e., usually there is a non-zero error probability. So, in most cases, the above assumption 

about perfect information does not hold in real life. 

Section 5.1 relaxes this assumption and designs a stochastic game model which is able to capture more 

realistic scenarios. It considers that a player knows the system's true state at a particular moment with some 

error probability, i.e., at any given point of time the true state and a player's perception can be potentially 

different. With this additional constraint of imperfect information, Section 5.1 computes the best strategy 

for a player considering other players' choice of possible strategies. 

In particular, Section 5.1 presents a theoretical analysis by which the defender can compute his/her best 

strategy to reach the Nash equilibrium of a stochastic game assuming the defender's sensor is imperfect. 

It is implicit that the defender knows the error probability of his/her sensor and the players' objectives are 

directly opposite, i.e., it is a zero-sum game. Moreover, Section 5.1 shows that if the defender follows the 

strategy prescribed by the perfect information model, then the Nash equilibrium is not achieved and the 

attacker's payoff can be more. Our algorithm for computing the best strategy runs offline well before the 
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game is being played, i.e., our game analysis is static. Furthermore, our theoretical results are validated via 

simulation experiments in MATLAB. 

The major contributions of Section 5.1 are summarized below: 

• We present a static analysis of an imperfect information zero-sum stochastic game and compute the 

best strategy of the system administrator in realistic scenarios. 

• Our analysis and simulation experiments illustrate that the system administrator will be betteroff if 

he/she takes our strategy compared to the scenario when he/she executes the strategy prescribed by 

the perfect information models. 

The rest of Section 5.1 is organized as follows: Section 5.1.1 briefly presents the perfect information stochas- 

tic game model. Section 5.1.2 and 5.1.3 introduces our imperfect information stochastic game model and 

also provides analysis and simulation results. Section 5.1.4 discusses the related work, and Section 5.1.5 

concludes Section 5.1. 

5.1.1    Preliminaries: A Stochastic Game Model with Perfect Information 

This section provides a brief overview of a stochastic game model as discussed elsewhere [58, 591. For 

further details of the stochastic game model refer to |28|. 

Lye et al. model the interaction between the attacks and the defense actions as a two players' (k = 1,2) 

game where player I is the attacker and player 2 is the system administrator |58, 59|. This infinite-horizon 

stochastic game model considers N states. 

The stochastic game is represented by a tuple (S, A1, A , Q, Rl, R2, ft) whose elements are defined 

below. 

1. S = {£i, £21 • • • • £N } is the set of states. A state represents the current status of the whole system 

under consideration. 

2. Ak =  {A . , Ah£.2, ..., Ak£N}, k = 1, 2 where Ak$. = { a* , ak
2, ..., ak    } is the action set 

of player k at state £j. It is assumed that Mk = \Ak
£, | for all 1  < j < N. 

3. The state transition probabilities are represented by the function Q : S x A1 x A2 x S —> [0 1] which 

maps a pair of states and a pair of actions to a real number between 0 and 1. As an example, Q(£\, 

a\ 1, «2I, £2) = 0.3 is interpreted as the probability of state transition from state £1 to £2 given that 

player I takes action a 11 and player 2 takes action a21. 

4. The reward of player k is determined by the function Rk : S x Ax x A'2 —> M which maps a state and 

a pair of actions to a real number. As an example, Rl(,£\, a\ 1, a21) = 42 is interpreted as the reward 

gained by the attacker at state £1 given that attacker takes action n\ 1 and player 2 takes action a2\. 

Negative reward represents the cost incurred by a player. 

5. ft, 0 < ft < I is the discount factor for discounting future rewards to calculate the overall payoff of a 

player in this infinite horizon game. 
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We now define the stationary strategy of a player. Stationary strategy is one that remains constant over time. 

Let $2" = { p G Rn | 5Zr=i Pi = 1' () - P» - 1} ^e tne set of probability vectors of length n. Let the 
function 7rfc : S —>• $2Mk denote the strategy for player k where 

7TA: (a) = [ 7T* (a,  ai), TT
A

' (a,  a2), • • •, *k (a,  «A/J], 

while 7rA: (a, c*j) is the probability with which player k selects the action a, in state a. If 7rfc is such that 

V a, i, 7rA: (a,  QJ) is 0 or I, then 7rfc is called a pure strategy. Otherwise, 7rA is called a mixed strategy. 

During each state transition, player k gets a reward (defined by the function Rk) or incurs some cost 

(negative reward). To compute the overall payoff of player k, we consider the future moves which will 

change the present state to next states giving future payoff to player k. The overall payoff is computed 

by discounting the future payoff using the discount factor /3. Let v vi wa(s) denote the expected over- 

all payoff of player k when the game starts at state s while the strategy of player 1 is 7T1 and the strategy 

of player 2 is ir'2.   Let the vector vk
irii n2 denote the aggregate payoff of player k, where vfe„.i   „2  = 

Each player has the goal to maximize his expected payoff. The Nash equilibrium of this game is defined to 

be a pair of strategies (n\, n%) which simultaneously satisfy the following equations component-wise: 

A stochastic game is called zero-sum if one player's reward at each state transition is equal and opposite of 

the other player's reward, i.e., for all i,j, rn we have i?'(£i, alj, aim) = - i?2(£i, «lj, «2m). It implies that 

for every pair of strategies the overall payoff of the players are same and opposite, i.e., 

VTT
1
   G   0Ml, 7T2   G   ttM2      u1^, ** =   -"'\i, ,2. 

For a zero-sum stochastic game which has a Nash equilibrium,^, 7r*), the value of the game is considered 

as v1
7ri) ^(si) where s\ is the start state. Let V denote the value of the game. 

We can compute the Nash equilibrium strategy of the players for a zero-sum stochastic game through a static 

analysis (offline analysis) of the game using the algorithm discussed in [28|. The algorithm used is basically 

an iterative non-linear optimization technique. 

5.1.2    Our Model with Imperfect Information 

The above game model assumes that the players have perfect information about the current state of the 

game. Our model presented in this section relaxes this assumption. Section 5.1.2.1 presents our imperfect 

information stochastic game model. Section 5.1.2.2 presents a static analysis and Section 5.1.3 provides the 
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simulation results. 

5.1.2.1     The Model 

Our model is an extension of the prior model (Section 5.1.1) and considers that a player k(k = 1,2) observes 

the game's true state at a particular moment by an imperfect sensor device. That means, player k can view 

£j as any state in the information set Ik. with some probability where Ik. = { £j,, £j2, • • •, £jp} with £j being 

an element of L. Compared to the perfect information model, player A;'s action space may become wider, 

i.e., player k may take an action which is allowed at a state fj. / £j belonging to the information set, Ik.. 

Let Bk denote the set of possible actions of player k when his/her information set is Ik.. Then 

B|=   U Al 

where Ak. denotes the action set of player A; when he/she is sure that the true current state is £j. Below we 

formally define the outcome of player A;'s extended action set Bt, compared to Ak. in the previous model, 

when the true state is £j. If player k takes an action ak € Bk when the true state is £j but ak is not in Ak., 

then in terms of the influence on state transition probability, ak is equivalent to player k taking no action at 

state £j. However, regarding the influence on player A:'s payoff ak may not be equivalent to player A: taking 

no action at state £j depending upon the cost of the execution of ak. 

Formally, our model is represented by a tuple, (S, l\ I2, El, E2, A\ A2, B\ D2, Q, Rl, R2, ft) 

whose elements are defined below. 

1. S = {£i, ^2) • • • i £N} <s the set of states. 

2. Ik — {I c,, Ik&, • • •, Ik£N }, k — 1, 2 where Ik^ represents the information set of player A; when 

the true state is £j, i.e., Ik$. = {£j,, £j2, • ••, £jp} (where p is an arbitrary positive integer) with the 

condition that £j 6  / £,. 

3. Ek — {E », Ek£2, ..., Ek£N}, A; = 1, 2 where the j-th set Ek£. represents the error probabilities 

of A:-th player's sensor at the true state £j over the corresponding information set, Ik^.. 

4. Ak = {Ak^, Ak£2, ..., Ak£N}, k = 1, 2 where Ak$. = { a* , ak
2, ..., ak fc} is the action set 

of player A: at state £j. 

5. Dk = {B ,, Bk£2, ..., Bk^}, k = 1, 2 where Bk^ represents the extended action set of player 

k at Ik£y That means, Bk^ — Ufjeik At. By introducing identical actions we can make \Bkc.\ 

same for all 1 < j < N. Let Tk = \Bk
f I. 

6. The state transition probabilities are represented by the function Q : S x Bl x B2 x 5 -> [0 1] which 

maps a pair of states and a pair of actions to a real number between 0 and I. Our model assumes 

that for any state £jif player A: takes an action (ik e Bk^ while ak does not belong to Akc., then 

Q (£jn Qu ' ai2' §2) = Q(&i' noP' ai2' ^2) wnere I represents the other player. 
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7. The reward of player k is determined by the function Rk :   S x Bl x D2 -> R which maps a state 

and a pair of actions to a real number. 

8. ft, 0 < ft < 1 is a discount factor for discounting future rewards in this infinite horizon game. 

We redefine the strategy function 7rk of the perfect information model for this imperfect information model 

7rk: S -> Q'k where nv [•7rk(s, «i),7rk(s, «2), • • •, 7rk (s, a-yk)]. The definition of the payoff as 

vector of player k (vk
n\   vz) and the Nash equilibrium, (7^, n2) are similarly extended. 

One major difference of this model from the perfect information game is as follows: As player A:'s sensor 

is not perfect, when his/her strategy nk is executed in the true sense, his/her observed strategy (referred to 

as apparent strategy in the rest of Section 5.1), irk is different from nk. We will illustrate this further in 

Section 5.1.2.2. 

5.1.2.2     A Static Analysis for a Game with Two States 

We now present a static analysis of our game model, by which a player can compute his/her best strategy 

offline. Only a zero-sum game is considered. This analysis considers the worst-case scenario from the 

defender's point of view. It is assumed that only the defender's sensor is erroneous while the attacker can 

perfectly observe the current state of the game. It is to be noted that our analysis can be easily extended to 

the case where the attacker's sensor is also imperfect. Furthermore, this analysis is restricted to a game of 

two states for the sake of simplicity. In the future work, this analysis will be extended for games with more 

than two states. We focus on the following game as illustrated in Figure 4. 

O          ^ _. —-^^ Q 
j        Normal 

State           ; 
/      Hacked      \ 

State 

\         (ST) \           (S2) 

•—1— 
The Real                  1 

 . -'" ^^ ^ 
1 

System                    1 
1 
1 

-    Defender's Sensor  — 

1 

Sensoi •*--  • Sensor 

/      \ 
/         A 

/           \ 
/              \ 

>              * 

/      V 
/        \ 

/          \ 

Defender's                f   s     l         Is,! 
observations 4            -         >          \        J 

1 s2 1    1 S1 ; 

Figure 4: The state transition diagram and defender's observations — the same sensor is shown twice to 
indicate observations at different states 
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There are two states in this game. The system is either in NormalState (s\) or in HackedState (.s2).The 

defender's sensor is imperfect and the error probability at state .siand .s2 are 71 and 72, respectively. That 

means, when the true state is .si, with probability 71 the defender observes that as ,s2, and when the true 

state is 82, the defender observes the state as S] with probability 72. However, it is assumed that the sensor's 

error probabilities (71 and 72) are known to the defender. On the other hand, the attacker's sensor observes 

the current state with no error. 

The action spaces of the players, A1 and A2 are as follows where a denotes 'attack', na denotes 'no attack', 

d denotes 'defense' and nd denotes 'no defense'. The first row in A1 or A2 represents the actions available 

in state .siand the second row is for .s'2. 

A a   na 

a    na 
and A2 d   nd 

d,    nd 

In this game, each player's extended action space (Section 5.1.2.1) remains same as the original action set. 

The strategy of the player k is represented by the probability distribution with which player k selects the 

available actions. The strategies of the players are represented by the following matrices irl and TT
2
: 

Tr'll      7r'l2 

7T'2I      TT'22 

and 7T 
7T211      7T2|2 

7T221     7T222 

As an example, IT
1
 11 represents the probability with which player I selects action a and 7r1i2 represents the 

probability with which player I selects action na at .s-| and 7r' n + nl 12 = 1. 

State Occurrence Ratio On,7-2): A stochastic game involves state transitions. The proportion of times a state 

Si will occur during the whole play is called its occurrence ratio and is denoted by r,. The value of //depends 

on the state transition probability function Q and the true strategies nl and n2. 

Given true strategies TT
1
 and 7r2, we can compute the effective state transition probability matrix P whose 

dimension is l^l x \S\. The element P(i,j) represents the probability with which state .s, will switch to 

state Sj . Here, P is a 2 x 2 matrix. 

We can compute nand ''2as follows. From basic theory of stochastic game [28] we know that P' (1, j) 

represents the probability that state Sj will occur at the ith transition. 

'•1 lim 
71—>00 

P(l,l)+    P2(l,l)+    ».    +Pn(l,l) 
II 

r'2 =   lim 
71—>oo 

P(l,2)+ P2(l,2)+ ... +P»(1,2) 

As expected from the above two expressions we get r\ + r2 = I. As the defender's sensor is not perfect, 

he/she can observe different occurrence ratios. As the attacker's sensor is perfect, now onwards the term 

'apparent' only relates to the defender. 

Apparent State Occurrence Ratio {r\',r-2)'- The apparent occurrence ratios of state ,S| and .s2 are as follows. 

36 



r\ = (l-7i)n +72T-2 

i 

'••2 7iTi + (l-72)r2 

We stress the fact that the defender's true strategy, n'2 is different from his/her apparent strategy, TT
2
 , which 

he/she observes being executed. We represent TT
2
 as follows. 

n~ 

2' 2' 

2' 2' 
T    21      *"    22 

_'_'' As an example, 7T nrepresents the apparent probability of action d and 7T 12 represents the apparent prob- 

ability of action rid at si. Note that 7T2 11 + 7r2 12 = 1. 

The defender's apparent strategy, n2 is determined by his/her true strategy, 7T2, sensor error probabilities 

(71,72) and the true state transition ratios, (/,, 72) as described in the following matrix equation. The 

matrix IIF is called the imperfect information factor and represents the influence of the sensor's errors. 

4 
TT7. 12 

'22 

IIF 
TT: 21 

12 

7To. 22 

...     (1) 

where IIF 
72 7'2 C-7l) ''i 

(l-7i) ?'i+ 72 r2       (I-71) rl+ 72 »'2 

7i n (I-72) ''2 

7i n+O-72) r2        71 rj + (l-72) r2 

We recall from Section 5.1.1 that Nash equilibrium strategies (7^, n2) of the players can be computed 

using the algorithm discussed in [28|. To reach this equilibrium the defender has to execute his/her apparent 

strategy n2 after computing it using equation I. In equation 1, he/she has to replace 7r2 by TT
2
. 

We now discuss the benefit of our approach compared to the perfect information model. If the defender 

follows the perfect information model he/she executes IT
2
 as the apparent strategy. In that case, the defender 

ends up playing the true strategy 7T2 given by the following matrix equation. 

TT
2
 = UF-1.ir'i 

As a result, the true strategy 7r2 deviates from the Nash equilibrium strategy when IIF is not an identity 

matrix. So, the equilibrium is not reached and the attacker can gain higher payoff as shown by our simulation 

results. Moreover, there exists such a stochastic game for which no feasible 7T2 exits corresponding to the 

Nash equilibrium strategy, n2. Some of our simulation experiments illustrate such a game. 

5.1.3    Simulation 

We validate the above analysis using simulation experiments as discussed below. 
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5.1.3.1 Simulation Framework 

We simulate a stochastic game being played between an attacker and a system administrator using MAT- 

LAB. We implement an application that is able to produce the pair of optimal strategies for a zero-sum 

game with imperfect information. This application is based on the modified Newton's method as described 

under article 3.3 in |28|. An iterative non-linear optimization algorithm is used. The input to this algorithm 

includes the state transition matrix and the reward matrix. As this is a zero-sum game, only the first player's 

reward matrix is given as input. 

To compute the output, the modified Newton's method requires solving a matrix game in each iteration. 

This functionality is achieved by using an additional component that generates the optimal strategies and 

the value for a zero-sum matrix game as in [95]. 

5.1.3.2 Simulation Results 

We demonstrate the feasibility and effectiveness of our model by using games as discussed in Section 5.1.2.2. 

Figure 4 displays the two system states and the transitions possible among them. The actions possible by 

the attacker during either state are a (attack) or na (no attack). The attack action indicates the execution 

of an attack with the motivation to bring the network to HackedState or to continue further attacking in 

HackedState. The actions possible by the defender during either state are d (defense) or nd (no defense). 

The defense action indicates the execution of a restore process with the motivation to bring back the network 

to NormalState from the HackedState or to strengthen the NormalState by increasing the monitoring level. 

The na or nd action indicates an instance of no action. We set the discount factor ft to 0.75 and defender's 

sensor's two error probabilities, 71 and 72 as 0.1 and 0.05, respectively. 

Our first experiment shows that perfect information models |58, 591 can give higher payoff to the attacker 

compared to our model. The state transition probabilities and the reward matrices are shown in Tables 4 and 

5. This style of representation is based on that in [28|. The rows for each state represent the actions possible 

by attacker and columns represent the actions possible by defender. Each element is divided by a diagonal 

into two halves where the upper half represents the reward to the attacker from that state and the lower half 

represents the state transition probabilities when the corresponding actions are performed by both players. 

For example, in NormalState, when the attacker and defender both perform their first actions, the reward 

to the attacker is 10 and the probability of the network remaining in NormalState is 0.7 and changing to 

HackedState is 0.3 (First row in Table 4). 
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Table 4:   The Rewards (to the attacker) and State Transition Probabilities at NormalStale in the first 
experiment 

Defender's Action 1 (d) Defender's Action 2 (nd) 

Attacker's Action 1 (a) 
(10) 

-"(0.7,0.3) 
(40) 

-"(0.7,0.3) 

Attacker's Action 2 (na) 
(200) ^^- 

(1,0) 
(0) 

(1,0) 

Table 5:   The Rewards (to the attacker) and State Transition Probabilities at HackedState in the first 
experiment 

Defender's Action 1 (d) Defender's Action 2 (nd) 

Attacker's Action 1 (a) 
(200) 

(0.4,0.6) 
(55) 

(0,1) 

Attacker's Action 2 (na) 
(45) 

^^^"(0.8,0.2) 
(550) ^^ 

(0,1) 

We calculate the pair of true optimal strategies, which are optStratl = |0.8696 0.1304; 0.8735 0.1265] (for 

the attacker) and optStrat2 = [0.3557 0.6443; 0.7014 0.2986] (for the defender). The value of the game V 

(the attacker's payoff when the game starts from NormalState) is found to be 284.5637. However, since the 

defender's sensor is faulty, he/she cannot directly execute this true strategy. The apparent strategy for the 

defender is computed as appStrat2 = [0.3708 0.6292; 0.6620 0.3380] using equation (I). Apparent strategy 

for only the defender is considered in our example as it is assumed that only the defender is uncertain about 

the present state of the system and not the attacker. 

Our model suggests the defender to execute the apparent strategy (appStrat2) and the value of the game (V) 

thus obtained is 284.5637. It is verified that in reality, the true strategy optStrat2 gets executed every time 

this apparent strategy is played by the defender. Therefore the Nash equilibrium is attained and the value of 

the game (V) remains the same as previous. Since the Nash equilibrium is attained, if the defender adheres 

to appStrat2, the attacker cannot gain a higher payoff than V if he alters his strategy. 

If the defender were to follow a game model based on perfect information, optStrat2 would be his/her 

apparent strategy. This scenario was also simulated and it was observed that the game is not in Nash 

equilibrium. This was observed by setting the attacker's strategy to Strati = |0 1; 0 11 and the value of 

the game (V/i) obtained was 422.8347, which is higher than V. Note that the increment in the attacker's 

gain can be much higher depending on the specification of the particular game (e.g., reward matrices and 

transition probabilities). It was also verified that, if the attacker adheres to optStratl (which corresponds to 

the Nash equilibrium), then the value of the game remains the same as expected. 

We now discuss our second experiment which shows the existence of such a game where strategies suggested 

by perfect information models could not be executed.  For the game in Tables 6 and 7, the true optimal 
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Table 6:  The Rewards (to the attacker) and State Transition Probabilities at NormalState in the second 
experiment 

Defender's Action 1 (d) Defender's Action 2 (nd) 

Attacker's Action 1 (a) 
(80)   ^^ 

^^-^(0.7,0.3) 
(-20) 

(0.7,0.3) 

Attacker's Action 2 (no) 
(100) ^^ 

(1,0) 
(0) 

(1,0) 

Table 7:  The Rewards (to the attacker) and State Transition Probabilities at HackedState in the second 
experiment 

Defender's Action 1 (d) Defender's Action 2 (nd) 

Attacker's Action 1 (a) 
(300) 

(0.4,0.6) 
(100) 

(0,1) 

Attacker's Action 2 (no) 
(300) 

(0.8,0.2) 
(100) ^^ 

(0,1) 

strategy obtained for defender was optStrat2 = [01; I 0|. Apparent strategies for all possibilities of true 

strategies were calculated and it was observed that none of them were equal to optStrat2. This is illustrated 

by Figure 5 that shows the Euclidian distance between the calculated apparent strategy (1st column) and the 

true optimal strategy optStrat2 (1st column). We observe that no point in the graph touches the XY plane, 

which signifies that no possibility of true strategies can lead to an apparent strategy equal to optStrat2. This 

result shows that it is not always possible for the defender to execute the strategy (optStrat2) prescribed by 

the perfect information model. 
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True Strategy at Normal State 
(probability of action d) 0     0 

True Strategy at Hacked State 
(probability of action d) 

Figure 5: The second experiment result — this plot implies that the defender cannot execute an apparent 
strategy which is same as the optimal strategy 

5.1.4    Related Work 

The areas of game theory which are relevant to information warfare were outlined in |39|. A methodology 

to model the interactions between a DDoS attacker and some defense mechanism such as 'pushback' was 

presented in [55]. The following papers are most relevant to our work. 

A perfect-information stochastic general-sum game and computed the Nash equilibrium using simulation 

was proposed in [58, 59|. Unfortunately, the used equilibrium computation algorithm for this general-sum 
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game was not available in these papers. 

A general-sum, static, finite game with dynamic information was proposed in [2]. Moreover, |3| presented 

an imperfect information repeated game with 'finite steps' or 'infinite steps'. They analyzed the Nash 

equilibrium in the general-sum setting. 

The operation of the IDS using a finite-state Markov chain was captured in |4|. With a few numerical 

examples, tools such as minimaxQ and naive Q-learning were used to find the best strategies of the players. 

|671 viewed the security problem as a general-sum repeated game. This model considers that the players 

cannot make perfect observations of each other's previous actions. 

Table 8 compares our work with the prior body of research. The dimensions used for the comparison include 

the type of analysis (static, dynamic or none) present in the work. 

Table I '<: Comparing Our work with the Prior Body of Research 
Work Stochastic 

game? 
Perfect    infor- 
mation? 

Zero-sum      / 
general-sum 
game 

Type       of 
analysis 

Lye et al. [58, 
59] 

Yes Perfect General-sum Static 

Alpcan  et  al. 
[2] 

No(static 
game) 

Imperfect General-sum Static 

Alpcan  et  al. 
[3] 

No( repeated 
game) 

Imperfect General-sum Dynamic 

Alpcan   et  al. 
|4| 

Yes Imperfect Zero-Sum Only    Nu- 
merical 
Examples 

Nguyen et al. 
[671 

No(repeated 
game) 

Imperfect General-Sum Dynamic 

Our work Yes Imperfect Zero-sum Static 

5.1.5    Concluding Remark 

Techniques that were proposed in the literature used stochastic game models to emulatenetwork security 

game, and showed how to determine the best strategy for the defenderconsidering the possible attack strat- 

egy used by the attacker. However, the prior research work assumed that the players have perfect information 

about the current state of the game, which generally does not hold in reality. Our model relaxed this assump- 

tion and enriched the prior game models by enabling them to capture more realistic scenarios. Section 5.1 

presented a theoretical analysis using which the system administrator can compute his/her best strategy to 

reach the Nash equilibrium of a stochastic game even if the IDS sensor is imperfect. Our theoretical results 

were validated via simulation experiments. 

Section 5.1 presented a static analysis to compute the best stationary strategy of the players. It was not 

discussed how the equilibrium can be reached during the game being played. We propose to investigate an 
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answer to this question in the future work. 

5.2    Analyzing a General-Sum Stochastic Game 

We have analysed paper [87] where an algorithm for computing Nash Equilibrium strategies was presented. 

In that paper example of general-sum stochastic game - Pollution Tax game was depicted along with Nash 

Equilibrium strategies found by algorithm introduced by the authors of that paper. We have implemented 

that algorithm in Matlab. The only difference in our algorithm is in a way of determining the initial feasible 

point because that part of the algorithm was not described clearly enough. Selection of the initial point can 

have impact on speed of the algorithm but does not have impact on the results. 

In section 5.2.2 a definition of the 2-player discounted general-sum stochastic game will be presented. In 

the next section algorithm presented in paper |87] will be described along with our implementation of that 

algorithm. In section 5.2.3.6 an example coming from paper [87] is described. Results of our experiments 

are presented in section 5.2.3.7. In the last section we describe our concerns regarding algorithm described 

in paper [ 87) and future work which would improve that algorithm. 

We need to mention here that the paper |87| that we used has not been published so far and we only have 

the preliminary version of it made accessible to us by the authors. 

5.2.1 History 

A stochastic game was introduced in the paper by Lloyd Shapley presented in 1953. Lloyd Stowell Shapley 

is an American mathematician and economist. He has contributed to the fields of mathematical economics 

and game theory. 

5.2.2 Definition 

We have already presented the definition of the 2-player discounted general-sum stochastic game in Sec- 

tion 5.1.1. To help exposition, we now present the definition with slightly different notations. 

2-player discounted stochastic game is a tuple (S,A\ A2,p, r1, r2, ft), where: 

• k € {1,2} - the set of players 

• S = {!,..., N] -the set of states 

• m   : S —> 1H - function assigning to each state number of possible actions of k-th player in that state 

• A„ — {a\,..., ak k, .} - set of all actions which can be taken by player k-th in the state s 

• Ak = \Ji=] A^=i - set of all actions which can be taken by k-th player 

• p : B —> [0,1] where B C S x A1 x A'2 x S - state transition function; p(s \s, a1, a2) is the probability 

of going to state s from the current state s when the player I chooses an action o1 e Al and the player 

2 chooses an action a2 e A2 
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• rk : C —> 9\ where C C S x A1 x A2 - payoff function; rk(s, a1, a2) is the payoff of player k-th 

when the player 1 chooses an action a   G Al
s and the player 2 chooses an action a   G Aj 

• f3 € [0, l)-discount factor 

A decision rule /( (resp., gt) of player 1 (resp., 2) at time t is a function which assigns to each action the 

probability of taking that action at time t. The strategy is called stationary if the decision rule does not 

depend upon the time t it depends only on the current state of the game.[ 87] 

The classical noncooperative assumption of game theory postulates that the players choose their strategies 

entirely independently (and secretly), and that they are only interested in maximizing their individual overall 

payoff functions. What is more, the players have precise knowledge about each other's presence in the game 

and payoff functions.1281 

Let f be strategy of player I and g be strategy of player 2, then the total expected /^-discounted payoff of 

player k-th, is given by 
oo 

1=0 

where ij' denotes the reward of player k-th at time t. 

We say that (/*,,</*) is a Nash equilibrium (named after John Nash , who proposed it) if 

vl(s,f,g*)^vl(s,r,g*) 

v}(s,f*,g)^v}(s,r,g*) 

for all strategies f, g and all states s. 
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Let us define the optimization problem: 

•2 

min   £ lU"k ~ rk(f,9) ~ fiPU,9)vk] 
v 1,v2,f,g ~ 

N 

RH°)9(S) +^P(«'l()flWcI(»)01Wlm>(,) 
.s       I 

AT 

/(.s)/?2(.s) + 0 E /(S)p(S>y(S') < «2(«)Caw 

in 

») 
s'=i 

E /(•"'«')= 1 
o!=l 

m2(.s) 

£ ry(.s,«2) = l 

5(s,a2)^0 

for all a1 e A1 (a), a2 e A2(s) and s e 5. 

Above optimization problem can be equivalently represented in the following way |87|: 

XjN+i — v3    (i) for i = l,...,N and j — 0,1 

X2N+mH0)+...+mHj)+i = fti + h 0 for i = 1,..., m1 (j + 1) and j = 0,..., iV - 1 

x2N+mi+m2(o)+...+m2(j)+i = 9(j + U *) for * = li -i 7"2(J + 1) and j = 0,..., AT - 1 

where mk(0) = 0. 

min h(x) 
X 

Ci(x) sC 0 for all i € h 

Ci(x) = 0 for alii e E 

Ci(x) ^ 0 for all i 6 h 

Below we present theorems holding for general-sum stochastic games. Their proofs can be found in |28|. 

These theorems justify the algorithm presented in [87|, for computing Nash Equilibria in general-sum 

stochastic games. 

Theorem 1 (Filar and Vrieze [28]). In a general sum, discounted stochastic game, there exists a Nash 

equilibrium in stationary strategies. 

Theorem 2 (Filar and Vrieze |28|). Consider a point x*T = ((vu)T,(v2*)T,f*,g*T). Then the strategy 

part (/*,</*) ofx*' forms a Nash equilibrium of the general-sum discounted stochastic game if and only if 

x* is the global minimum of the optimization problem J with h(x*) = 0. 
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Theorem 3 (Filar and Vrieze [28]). Let x*T = {{vu)T, (v2*)T, f*,g*T) be feasible for I with an objective 

function value h(x*) = 7 > 0. Then the strategy part (f*,g*) ofx    forms an f - equilibrium with e ^ y^j. 

5.2.3    Algorithm 

In paper [87] was provided solution to the optimization problem I. Their algorithm is based on Sequential 

Quadratic Programming. In each iteration of the algorithm 5.2.3.5 they solve a quadratic programming 

subproblem described in section 5.2.3.1 and defined in ]87|. In section 5.2.3.2 will be presented a Hessian 

defined in [87] which is an input to the quadratic program. 

5.2.3.1 Quadratic programming subproblem 

Below we describe the quadratic programming subproblem. 

Let x be a feasible point of I and p be the trust region radius. The global minimum d of the quadratic 

program QP(x, p, H) given by 

ruined) = dTVh(x) + -dTH(x)d 
<t 2 

d(x) + (Vci{x))Td < 0, i € h 

Ci(x) + (Va(x))Td = 0,i€E (2) 

d(x) + (Vci(x)fd ^ 0, i e h 

\\d\\oc ^ P 

gives the required descent direction. Matrix H(x) needs to be positive definite for the optimization problem 

2 to be a convex optimization problem 111 ] p. 152. 

5.2.3.2 Hessian 

In this subsection we present construction of the Hessian matrix |87|. 

For each s £ S, let 

A* = (A*'\A*'2,...,A*-mfcW) 

be vectors with positive components and define 

A =   (Aj, X2, ..., Ayy, A), A2, ..., Ayy). 

Let c(x) = (c\ (x),C2(x),..., cm\+mz{x))T, where the components of the vector c(x) are in the same order 

as in the definition of the vector A. 

Let 

L(x, A) = h(x) + XTc(x) 

and 
A,. —  J, 

\2<a'2 = X 

27V+m1(l)+m1(2)+...+m1(a-l)+a1 

2/V+m1+m2(l)+m2(2) + ...+m2(s-l)+a2 
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then 

H(x) = V2
xxL(x,\)\x=i 

Hessian not need to be positive definite. 

Let assume that A is a symmetric matrix which is not positive definite. Let A;,..., A„ be the eigenvalues of 

A and v\, ...,vn the corresponding eigenvectors. Consider the matrix D = A + fil, where //, ^ 0. Then 

Bvi = (A + fil)vi = Avi + ftlvj = XiVi + fWi = (Aj + fi)i>i for all i 6 {1,..., n}. That is why when /x is 

large enough B is positive definite. 

In the algorithm, when Hessian is not positive definite, we make it positive definite by adding absolute value 

of the sum of minimal eigenvalue and -0.1 to the diagonalvalues. 

5.2.3.3    Initial point 

In this subsection construction of the first initial point is presented. 

x° = ((-(;')7',(?;2)7',/0,.9or), where 

m'(.s) 

,/>(*, «2) m2(s) 

for all ai} G Ax (.s), a2 G Ar(s) and s € S and v , v1 are solutions of the below linear optimization problems 

respectively. 

min   i;sy-r]U\!j)-(iP(f,g)v'} 

/?V.SO//H.SO+^EP^'I'S^0('S>I('S')^'''I('S')1-I(.S) 

min     lfsl[v2-r*(f,g)-[3P(f,g)v2) 
"i^ 1/1.9 

/(,(.s)/?'2(,0 + /? ]T /()(,s)P(,s'|.s)^(.s') < r;2(S)C2(s) 

,'=1 

5.2.3.4    Numerical differentiation 

In that section possible approximations of the derivatives will be presented. Those approximations are used 

in the numerical implementations of gradient and Hessian matrix of a function with n independent variables. 

First derivative of a function f can be approximated in the following way: 

f       /(.f- /,)y(J + /„ 
111 

1 2 
In this case the greatest accuracy is achieved when /; s=s xes and then the truncation error is M. SO, with 

this centered diference formula we can obtain accuracy, to about the 2/3 of the machine precision (f )|paste 
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reference]. 

Second derivatives of a function f can be approximated in the following way: 

f(x + h)-2f(x) + f(x-h) 
f (x) h2 

The greatest accuracy is achieved when h as .cfi and then the truncation error is ^/f. 

Mixed derivatives of a function f(x,y) can be approximated in the following way: 

f(x + h, y + k) - /(./: + h, y - k) - /(.,; - h, y + k) + f(x - h, y - k) 
fxy{x,y) 

Ahk 

The greatest accuracy is achieved when // « :/Y < and k ~ yea and then the truncation error is \fe. 177, 351 

5.2.3.5    SQP Algorithm 

In that subsection Sequential Quadratic Programming algorithm described in |87| will be presented. It 

paper [87] can be also found proofs of theorems showing that this algorithm is convergent to point holding 

information about Nash Equilibrium. 

Algorithm 1 Calculate Nash Equilibrium 

Require: p ^ 0, a, r € (0,1) 
I: Find initial feasible point x° such that Cj(x°) < 0 for all i G I\ 
2 

3 

4 

5 

6 

X = X° 

loop 
Calculate Hessian H = H(x), make it positive definite if necessary 
d = QP(x,p,H) 
if ||d||2 < f then 

return x 
7:      end if{f is machine precision} 
8:      a = 1 
9:      while Ci(x + ad) > 0 for i 6 I\ do 

10: a = rat 
II:      end while 
12:      if h(x) - h(x + ad) ^ <r(r/(0) - q(ad)) then 
13: x = x + ad 
14:      else 
15: Reduce the trust region radius p= % 
16:      end if 
17: end loop 

In our implementation the main procedure implements algorithm described in subsection 5.2.3.5. That 

procedure invokes procedures: determining initial point (described in subsection 5.2.3.3), calculating nu- 

merically Hessian matrix in point of a function, solving quadratic programming subproblem (described in 

subsection 5.2.3). There is also used procedure calculating numerically first derivative in point of a function. 

Implementation is tightly coupled to example described in paper |87| but could be easily adjusted to other 
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examples. However, the best solution would be to design universal structures and adjust implementation 

appropriately so that code would not have to be modified in case of different general-sum stochastic games. 

Theorem 4 (|87|). The sequence of points generated by the algorithm converges to a Karush-Kuhn-Tucker 

(KKT) point of the optimization problem. 

Theorem 5 (|87|). Every KKT point of the optimization problem is a Nash equilibrium of the stochastic 

game. 

We have implemented our algorithm in Matlab R2008b. We used linprog and quadprog procedures from 

Optimization Toolbox. 

Additionally we used CVX: A system for disciplined convex programming by Michael C. Grant and Stephen 

P. Boyd for checking some partial results. CVX is a Matlab-based modeling system for convex optimization. 

5.2.3.6    Example 

The following example comes from paper |87|. We could also come up with lots of other examples of 

general-sum stochastic games, like those related to network security (game between attacker and defender 

taking place in network). 

Two firms produce the same product and compete for the same market. Whatever is produced is consumed. 

The firms contribute to the emission of a certain pollutant. More production implies higher level of pollution. 

Suppose the government wants to control the pollution level, but it can only detect the combined emissions. 

To control the emissions, the goverment imposes the same tax on both the firms. 

The government imposes: 

• no tax if both the firms do not pollute 

• tax 2 if the pollution is at intermediate level i.e., in (0,4] 

• tax 4 if the pollution level is high i.e., more than 4. 

So, the set of states is S <E {(), 2,4} 

The actions of the firms are the level of the pollution that they cause. 

Action set for Firm 1 at state 0 - A1 (0) = {(), 3, 5} 

Action set for Firm I at state 2 - A1 (2) = {(), 2,15} 

Action set for Firm I at state 4 - Ax (4) = {(), 2} 

Action set for Firm 2 at state 0 - A2(0) = {(),,'}, 5} 

Action set for Firm 2 at state 2 - A*{2) = {(), 2,4} 

Action set for Firm 2 at state 4 - A1 {A) = {(), 3} 

Transition probabilities and payoffs of both players are presented in Tables 9, 10, and 11. 

Results presented in the paper [87] are presented in Table 12. 
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Table 9: Transition probabilities and payoffs of both players at .s = 0 

Firm 2 
Firm 1 

0 3 5 

0 
(5.00, 6.00) 

(1,0,0) 
(4.40, 7.00) 

(0,1,0) 
(4.00, XoTP 

(0,0,1) 

3 
(5.75, 5.40) 

(0,1,0) 
(5.15,6.40) 

(0,0,1) 
(4.75,7irrP 

(0,0,1) 

5 
(6.25, 5.00) 

(0,0,1) 
(5.65, 6.00) 

(0,0,1) 
(5.25, 6^6TP 

(0,0,1) 

Table 10: Transition probabilities and payoffs of both players at ,s     2 

Firm 2 
Firm 1 

0 2 4 

0 
(3.00, 4.00) 

(1,0,0) 
(2.60, 4.67) 

(0,1,0) 
(2.20, 534T" 

(0,1,0) 

2 
(3.50, 3.60) 

(0,1,0) 
(3.10,4.27) 

(0,1,0) 
(2.70, 494T~ 

(0,0,1) 

3 
(3.75, 3.40) 

(0,1,0) 
(3.35, 4.07) 

(0,0,1) 
(2.95, 4/7Tp 

(0,0,1) 

Table 11: Transition probabilities and payoffs of both players .s = 4 
Firm 1 

Firm 2              ^^^^ 
0 2 

0 
(1,0,0) 

(1.00, 2.0OP" 
(0,1,0) 

(0.40, 3.00)^ 

3 
(0,1,0) 

(1.50, 1.60T~ 
(0,0,1) 

(0.90, 2.60T~ 

Table 12: Nash Equilibria for various discount factors: These results were presented in [87]. 
Discount factor Player s=0 s=2 s=4 

p = 0.2 
Firm 1 
Firm 2 

(0,0,1) 
(0,0,1) 

(0,1,0) 
(0,1,0) 

(1,0) 
(0,1) 

P = 0.3 
Firm 1 
Firm 2 

(0,0,1) 
(0,0,1) 

(0,0.4842,0.5158) 
(0, 0.4, 0.6) 

(1,0) 
(0,1) 

ft = 0.5 
Firm 1 
Firm 2 

(0.9,0,0.1) 
(0.75, 0, 0.25) 

(0.5473, 0.4527, 0) 
(0.4802,0.5198,0) 

(1,0) 
(1,0) 

fie {0.7,0.8,0.9,0.98} 
Firm 1 
Firm 2 

(1,0,0) 
(1.0.0) 

(1,0,0) 
(1,0,0) 

(1,0) 
(1,0) 

For high discount factor, both firms do not pollute. Thus the government can achieve its goal of less pollu- 

tion. 

5.2.3.7    Empirical results 

Tests were run on Laptop HP with Intel Dual Core Processor, 2100MHz, 4GB RAM, Vista64bit. 
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Problem 1. For discount factors /3 G {0.2,0.3,0.5,0.7,0.8,0.9,0.98} and starting feasible point computed 

according to section 5.2.3.3 algorithm was converging too slowly. 

Problem 2. Results in Table 13 were achieved after setting the initial point's strategies directly to those 

achieved by the authors of the paper [87]. 

Table 13: Results from our Experiment: Nash Equilibria for various discount factors. 
Discount factor Player s=0 s=2 s=4 h(x) Execution time 

ft = 0.2 
Firm 1 
Firm 2 

(0,0,1) 
(0,0,1) 

(0,1,0) 
(0,1,0) 

(1,0) 
(0,1) * 

ft = 0.3 
Firm 1 
Firm 2 

(0,0,1) 
(0,0,1) 

(0,0.4842,0.5158) 
(0, 0.4, 0.6) 

(1,0) 
(0,1) * 

ft = 0.5 
Firm 1 
Firm 2 

(0.9,0,0.1) 
(0.75, 0, 0.25) 

(0.5473, 0.4527, 0) 
(0.4802,0.5198,0) 

(1,0) 
(1,0) * 

ft = 0.7 
Firm 1 
Firm 2 

(1,0,0) 
(1,0,0) 

(1,0,0) 
(1,0,0) 

(1,0) 
(1,0) 1.42e-014 64.1 23064 s 

ft = 0.8 
Firm 1 
Firm 2 

(1,0,0) 
(1,0,0) 

(1,0,0) 
(1,0,0) 

(1,0) 
(1,0) 2.13e-014 63.187655 s 

ft = 0.9 
Firm 1 
Firm 2 

(1,0,0) 
(1,0,0) 

(1,0,0) 
(1,0,0) 

(1,0) 
(1,0) 4.26e-014 64.586358 s 

ft = 0.98 
Firm 1 
Firm 2 

(1,0,0) 
(1,0,0) 

(1,0,0) 
(1,0,0) 

(1,0) 
(1,0) 4.55e-013 59.479102 s 

* To slowly convergent, but confirmed that results presented in paper IH7j are wrong according to our 

algorithm. 

The results we obtained confirm the results obtained in paper |87| only partially. 

Problem 3. When f is set to [00101010]' and g is set to [00101001]' then after few seconds x has value x 

= 15.485 3.8745 1.1749 7.5008 5.7708 4.1541 0 0 10 1 0 0.9998 0.0002 0 0 1 -0 0.9996 0.0004 -0 If We 

can see that strategy parts are convergent to different values. 

When f is set to [00101001]7 and g is set to [00100101]7' then after few seconds x has value x=l5.4750 

3.1859 1.1250 7.3200 5.5829 3.2500 0 0 1 -0 0.9643 0.03569 0 10 0 1 -0 0.0273 0.9727 -0 1] We can see 

that strategy parts are convergent to different values. 

When f is set to [00100101]7' and g is set to [00100101]7' Then after 68.948797 seconds we can see that 

/;(./) = 5.6(i2137425588298r - 015 sofi gform Nash Equilibrium. 

5.2.3.8    Limitations and Remarks 

1 In the algorithm, procedures computing numerically gradient and Hessian matrix of a function should 

be properly modified. It is not fixed what value should have h (see section 5.2.3.4) when x=0. Cur- 

rently in such case we set // to x/i. In the paper [87| is not described how gradient and Hessian matrix 

of the functions are computed. 
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2 In paper [87] they compute value vectors of initial point by rinding centers of maximal circles in- 

scribed in polyhedrons of linear optimization problems (described in 11 11 p. 416) described in sec- 

tion 5.2.3.3. Our computations show that polyhedrons of those linear optimization problems are not 

bounded. That is why there do not exists such circles.!'' I 

3 Value of the initial point has impact on rapidity of convergence, what show experiments presented in 

problem 13. 

4 Objective function of the main optimization problem is not convex in general, although it can be 

convex function over the domain restricted by constraints. 

5 More innovative version of Sequential Quadratic Programming algorithm is described in [66|. 

5.2.4    Additional Information 

Below we present some additional relevant information. 

• At the early stage of our work, we concentrated on the article "A Computational Procedure for 

General-sum Stochastic Games" by Prasad H. L., S. Bhatnagar, and N. Hemachandr available at 

http://aditya.csa.iisc.emet.in/TR/2009/5/. We spent significant amount of time in order to understand 

it more deeply. This article assumed that for Nash equilibrium to be found it has to have some special 

properties. That is why algorithm proposed here is not general and works only for some special cases. 

• The paper, "A Trust Region Sequential Quadratic Programming based Algorithm for computing Nash 

Equilibrium Strategies Of Stochastic Games" |87| describes general algorithm for computing Nash 

Equilibria in General-sum stochastic games. For that reason we have started working on understand- 

ing concepts described here. We have decided that we will start to implement this algorithm using 

Matlab. It occurred that some parts of that algorithm can be solved by Matlab core procedures. 

• We wrote emails to authors of articles: "A Computational Procedure for General-sum Stochastic 

Games" and "A Trust Region Sequential Quadratic Programming based Algorithm for computing 

Nash Equilibrium Strategies Of Stochastic Games" |87| asking for code for their implementations of 

algorithms described in those papers and got answer that authors are still improving their implemen- 

tations. 

• We have watched online videolectures: "Game Theory" by Professor Ben Polak (YALE) and "Convex 

Optimization I" by Professor Stephen Boyd (Stanford University). 

• Finally, we have finished implementing the algorithm decribed in |87| and presented results in Sec- 

tion 5.2.3.7. 
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5.3    Summary 

Prior researchers designed stochastic game models for network security assuming that players have per- 

fect information. We designed a stochastic game model in which players may have imperfect information. 

Furthermore, prior works did not present an algorithm to compute the equilibrium of a general-sum stochas- 

tic game. We searched the game theory literature for such an algorithm and discovered that only recently 

theoreticians proposed one such algorithm. We analyzed this algorithm, verified the analytical results via 

simulation, and found that this algorithm has many limitations. 
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6    Game Theoretic Defense Mechanisms against a Class of Attacks 

In this section, we focus on bandwidth depletion attacks for Denial of Service (DoS) or Distributed DoS 

(DDoS) where a single attacking node or multiple attacking nodes attempt to break down one or more 

network links by exhausting limited bandwidth. We consider the interaction between the attacker1 and 

the defender (network administrator) as a two-player game and apply game theory-based countermeasures. 

For each of DoS and DDoS cases, we design a static game, which is a one-shot game where no player 

is allowed to change the strategy. The attacker attempts to find the most effective sending rate or botnet 

size while the defender's challenge is to determine optimal firewall settings to block rogue traffics while 

allowing legitimate ones. We study the existence of the Nash equilibrium, which represents the best strategy 

of each player. We also show the benefit of using the game-theoretic defense mechanisms to the network 

administrator. Furthermore, we present a dynamic game model that allows each player to change the strategy 

during the game. 

We validate our analytical results through extensive simulation-based experiments in NS-3. Our simulations 

provide performance measurements from situations involving a single attacking node and multiple ones. We 

develop a new module in NS-3, NetHook, which enables an application or a module to have direct access to 

packets as it traverses the network stack. The addition of this module satisfies the requirements of our packet 

filtering specifications. More importantly, NetHook facilitates packet inspection at any arbitrary level of the 

NS-3 network stack and can be used to implement any of the myriad of filtering applications to provide 

features such as firewall, network address translation, and intrusion detection system. We also develop 

two additional modules based on NetHook in NS-3: NetHookFlowMon, a layer-2 flow monitoring module 

that provides a per-flow association of packet flow information, and NetHookFilter, a layer-3 module that 

implements our game-inspired filtering approaches. 

6.1    Related Work 

Bandwidth depletion in the form of DoS or DDoS is one of the most common attacks in cyberspace and 

various defense mechanisms have been proposed to mitigate the effect of such attacks [611. We provide 

below a survey of related efforts. 

The key of DoS/DDoS defense approaches is to identify malicious nodes and restrict their packet injection 

from the source or drop unwanted packets at intermediate routers before they reach the destination. PATRF 

CIA |93| allows edge networks to cooperate to prevent misbehaving sources from flooding traffic. Lau et. 

al [50] conducted simulation-based analysis on various queuing algorithms including DropTail, Fair Queu- 

ing, Stochastic Fair Queuing, Deficit Round Robin, Random Early Detection, and Class-based queuing to 

determine the best queuing strategy in the target router during a DDoS attack. Chertov et. al |211 pointed 

out that DoS can be caused not only by flooding but also by exploiting the congestion window of TCP in 

the communication between the server and the client. Their experiments were based on the assumption that 

the length of the attack pulse controls the tradeoff between attack damage and attack stealthiness. During 

1 We assume that a single attacker controls all of the attacking nodes present in a botnet for DDoS. 
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the congestion avoidance phase, when packet losses occur, TCP halves its congestion window, which is 

exploited for attack. 

Andersen et. al |6| proposed a proactive protection scheme against DDoS attacks by imposing an overhead 

on all transactions to actively prevent attacks from reaching the server. Their architecture generalizes the 

Secure Overlay Services (SOS) to choose a particular overlay routing and the set of overlay nodes are used 

to distinguish legitimate traffic from the attack traffic. Yaar et. al 1100] proposed a Stateless Internet Flow 

Filter (SIFF) to mitigate DDoS flooding attacks based on per-flow states by protecting privileged flows 

from unprivileged ones. They used a handshake mechanism to establish a privileged flow that consists of 

marked packets with the "capability" obtained by the handshake. Wu et. al |96| constructed an adaptive 

cyber security monitoring system that integrates a number of component techniques such as decision fusion- 

based intrusion detection, correlation computation of event indicators, random matrix theory-based network 

representation of security events, and event identification through network similarity measurements. 

Game theory has been widely applied in various application domains and is attracting more attention from 

network researchers for cyber security. Xu et. al |99| proposed a game-theoretic model to protect a web 

service from DoS attack. Network attacks 1100, 81, 69, 51] have been extensively studied via simula- 

tions, which often require realistic parameters of simulated components. Our work focuses on mitigating 

DoS/DDoS attacks using a game theoretic approach and validating the game models in NS-3. Different 

from other simulation efforts, we develop several new modules of NS-3 for gathering packet statistics and 

mitigating malicious flows. 

6.2    Network Topology 

Internet 
Cloud 

Attack Agents 

Legitimate 
Users 

Defender's Control 

P2 
SW —>( s J Victim 

Server 

Legend: PR = Perimeter Router, FW=Firewall, SW= Switch 

Figure 6: A generic network topology for DoS/DDoS attack. 
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We consider a generic network topology for DoS/DDoS attacks as shown in Figure 6, where the server S is 

connected to the Internet cloud via an edge switch (SW), a firewall (FW), and a perimeter router (PR). The 

bandwidth of the pipe (PI, P2) between the FW and the SW is limited and is subject to a DoS/DDoS attack. 

The defender's control is present at the FW. There are n legitimate users who need to communicate with the 

server S, and also, there is one attacker A who attempts to launch a denial of service attack by consuming 

most of the bandwidth of the pipe (P\, P2). The attacker A controls m attacking nodes that can send bogus 

packets. Note that DoS attack is a special case of DDoS attack when m = 1. 

We would like to point out that our models and simulation-based experiments are not network-specific and 

are readily applicable to any DoS/DDoS scenarios in an arbitrary network topology with the following 

assumptions on network settings: 

• A single attacker controls all of the attacking nodes, each of which sends a flow of bogus packets to 

the server S. 

• There is an infinitely high bandwidth available on the channel between the PR and the FW, which is 

able to process all of the incoming packets. 

• The defender has no knowledge of whether the flow is coming from the attacker or a legitimate user. 

• The FW's belief on the legitimacy of the flow decreases with the increase of the flow rate. 

• Some packets of a flow / are dropped in one of the two places: (i) at the FW; and (ii) at point PI when 

the total incoming flow rate T is more than the available bandwidth B. 

• The attacker does not spoof a unique source address for each packet in a single flow. Such spoofing 

would be extremely difficult and is highly unlikely to occur. Note that when the spoofed source 

address is the same for the entire flow, the filtering mechanism would act the same as if there were no 

spoofing. 

For convenience, we tabulate all the notations and abbreviations used in our mathematical models in Ta- 

ble 14. 

6.3    Game Models 

In this section, we present our game models for DoS/DDoS attacks and their possible countermeasures. 

We consider the interaction between the attacker and the defender (network administrator) as a two-player 

game. We study the existence of an equilibrium in these games and also show the benefit of using the 

game-theoretic defense mechanisms. 

The attacker attempts to find the most effective packet sending rate or botnet size, and the defender's chal- 

lenge is to determine the best firewall settings to block rogue traffics while allowing legitimate ones. We 

first discuss some basic concepts of game theory and the profile of legitimate users, and then construct our 

game models. 

In a game, each player chooses actions that result in the best possible rewards for self, while anticipating 

the rational actions from other players. A strategy for a player is a complete plan of actions in all possible 

situations throughout the game.   A Nash equilibrium is a solution concept that describes a steady state 
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Table 14: Notations and abbreviations used in the models. 
Symbol Meaning 

S the victim server 
PR the perimeter router 
FW the firewall 
SW the switch 

Pi the outgoing point from FW 

P'2 the incoming point to SW 
B the bandwidth of the pipe (P\ P-i) between the 

firewall FW and the switch SW 
n the number of legitimate users 
rn the number of attacking nodes 
n the expected bit rate of a legitimate flow 

"i the standard deviation of a legitimate flow rate 

TA the bit rate of an attack flow 

7 the minimum bit rate for a flow to be 
considered alive 

condition of the game; no player would prefer to change his/her strategy as that would lower his/her payoffs 

given that all other players are adhering to the prescribed strategy. 

A static game is a one-shot game in which each player chooses his/her plan of actions and all players' 

decisions are made simultaneously. A dynamic game is a game with multiple stages in which each player 

can consider his/her plan of actions not only at the beginning of the game but also at any point of time in 

which they have to make a decision. 

6.3.1    Legitimate User Profile 

We consider the presence of n legitimate users interested in communicating with the server S. The sending 

rate of a legitimate user is considered to be a random variable. In particular, we model the sending rate of 

legitimate users by picking //. samples from a Normal Distribution, i.e. Xi ~ M{r^ af), i = 1,2,..., n where 

Xj represents the sending rate of the i-th user, 77 is the mean value of a legitimate user's sending rate, and 07 

is the standard deviation. Therefore, the total incoming flow rate with no attack is Tna — X\ + X2.... + Xn. 

By basic laws of probability, we have Tna ~ Af(n • 77, n • a'f). We assume that the pipe bandwidth B is 

chosen such that Tna < B with a high probability. 

We first present our static game model where one single attacker controls all of the attacking nodes. Note that 

there is only one attacking node in a DoS attack, while there are multiple attacking nodes in a DDoS attack. 

Our discussion considers rn attacking nodes and is generic with respect to DoS or DDoS attacks. When m 

is set to be 1, we get the DoS attack scenario. We further discuss the dynamic game model highlighting its 

difference from the static game. 
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6.3.2    A Static Game 

In a static game, once a player decides his/her strategy, he/she does not have a second chance to change 

it. We consider that the attacker's reward is not necessarily equivalent in value to the defender's cost, 

i.e. it could be a zero-sum or non-zero sum game. The only actions available to the attacker are to set 

the sending rate and to choose the number in of attacking nodes. We assume that the sending rate is the 

same for all of the attacking flows, which is represented by VA- In an attack situation, the total flow rate 

T = (Xi + X2 + ... + Xn) + in • TA- If T > B, then the denial of service occurs due to a congestion 

condition in the pipe (Pi, P2). 

6.3.2.1    Impact of the Attack with no Defense 

When there is no defence mechanism in place, all the packets of each flow pass the firewall. However, if 

T > D, only a fraction of each flow can pass through the pipe (Pi, P2). Let a denote this fraction, which 

is the same for each flow. We know that (1 —a) fraction of each flow will be dropped at P\: if the bit rate 

of a flow is r, only ar bit rate will reach the server or destination. We further assume that the bandwidth 

resource is shared in a fair and equitable manner, and we have a = S. Let 7 be the minimum bit rate for 

a flow to be considered as a flow, which depends on the specific communication protocol used, and let n,, 

be the average number of legitimate flows, which are able to reach the server. We get ng = 11. • P[X, > -], 

where n is the total number of legitimate flows and P[X > x] represents the probability that the value of 

the random variable X is higher than x. Similarly, a fraction of each attack flow will also be dropped at P\. 

So, we have the average bandwidth consumption (by the attacker) ratio calculated as: 

d _ in • (v • ra _        in • rA 
>'b   — „  —  : • U) 

and the ratio of lost users to the total number of users on average calculated as: 

nd n-ng 

=   PlXi<%] (2) 
=    P[Xi < 2i!lIlj2I4i]. 

The attacker's objective is to increase v^d and u• , which are considered as the rewards. Also, we assume 

that the attacker has to incur some cost to get control of an attacking node. We assume that the attacker's 

total cost vc is proportional to the number of attacking nodes employed and v(. = in. We model the attacker's 

net payoff as a weighted sum of the above three quantities defined as: 

Va = wa
b • vf + < • vf - wa

c • vc, (3) 

where u;f*, tu°, and w'(
l are the attacker's corresponding weight coefficients. 

On the other hand, we model the defender's net payoff as a weighted sum defined as: 

Vd = -wd
b-vf-wi-vf + wi-vc, (4) 
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where wf, w^ and w^ are the defender's weight coefficients. 

6.3.2.2    Impact of the Attack in the presence of Firewall 
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Figure 7: Plots of several sample S curves. Dropping rate of a flow at the firewall is modeled by an S curve. 
The X axis is the flow rate and the Y axis is the drop probability. The parameter M represents the flow rate 
for which the drop rate is 0.5. 

The firewall is the defense agent of the network administrator: it drops the packets of an incoming flow with 

a probability depending on the flow rate. The dropping rate is modeled by a sigmoid function as follows: 

F(x) = 
l 

l+e 0   B    _ 
(5) 

where the parameter M represents the flow rate for which the drop rate is 0.5 and (3 is a scaling parameter. 

Figure 7 illustrates several sample sigmoid functions where B = 1000 units and (3 = 20. The firewall 

drops the packets of a flow of rate r with a probability F(r). It is worth pointing out that some packets of 

a legitimate flow might also get dropped at the firewall. We consider that the defender controls the value of 

M, which is the only defense action. 

Recall that r\ represents the expected rate of a legitimate flow. Let the average rate of legitimate flows 

passing through the firewall be r\. We have r\ = 77 • (1 — F(ri)). On the other hand, the average rate of 

attacking flows passing through the firewall is r'A — TA • (1 — F(TA))- If we replace TA by r'A and rj by r[ in 
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Equations (1) and (2), we obtain the following results: the ratio of average bandwidth consumption by the 

attacker is 
m • r'A 

Vb =  ;   , ,  » (6) n • r [ + m • r A 

and the ratio of lost users to the total number of users on average is 

„„ = P[Xi < ^r'l+Bm.r'A)] (?) 

Note that the right hand side of Equation (7) considers the losses due to both the firewall and the congestion. 

We can compute the attacker's and defender's payoffs Va and Vd from Equations (3) and (4), respectively, 

by replacing v%d by v\, and v"d by vn. 

We use the notion of Nash equilibrium to determine the best strategy profile of these two players. Each 

player has the goal to maximize his/her payoff. The attacker needs to choose optimal values for m and VA, 

and the defender needs to choose the best value for M in the sigmoid function to be used by the firewall. 

The Nash equilibrium of this game is defined to be a pair of strategies (rA,m*, M*), which simultaneously 

satisfy the following two relations: 

V(r'A, m*, M*) - V(rA, m, M*)   V r^' m 

V(rA, m\ A/') ^ V(l*A, m; M)  V M 

We can analytically compute the Nash equilibrium strategy profile (r*A,m*, M*), which could also be 

obtained through numerical computation for a particular game setting. We use MATLAB as the platform for 

numerical computation. The following analysis shows an interesting case in which the total bytes sent by 

the attacker remains constant, i.e., m • VA does not change, which means that the attacker only needs to set 

the value of m. In our future work, we will extend this analysis to a more general case. As an example, let 

us consider the scenario where the attacker's and the defender's weight coefficients are the same (w% = wd, 
wn = wn< ar|d wc = wc)' i-e-< Va = ~Vd (m a zero-sum game). Figure 8 illustrates the attacker's payoff 

Va for different numbers m of attack flows, and different values of M with w^ = 1000, u;" = 1000, 

w« = 10, B = 2000, n = 20, n = 60, at = 20, 7 = 10, and m • rA = 5000. We observe a saddle 

point at m* = 22, M* — 225, which represents the Nash equilibrium. The attack flow rate r*A = 227.27 

corresponding to m* = 22. 

6.3.3    A Dynamic Game 

In the static game model discussed above, no player has the chance to modify his/her strategy. Once the 

attacker sets the value for the flow rate r A and the number m of attacking nodes, they remain fixed throughout 

the game. Similarly, the defender is not allowed to change the value of M, i.e. the firewall midpoint. 

The dynamic game model allows the players to change their strategies. This property may shift the game 

equilibrium point, i.e, the strategy profile (r^, m, M) may change during the game. 

60 



1000-, 

800- 

£   600- o 
OS 

Q. 

•2   400- 

o 
TO 
5   200- 

-200 

Number of Attack Flows (m) 

500 

Firewall Midpoint (M) 

Figure 8: The attacker's payoff Va for different numbers m of attack flows and different values of M 
(the firewall midpoint). We observe a saddle point at m* = 22, M* = 225, which represents the Nash 
equilibrium. 

The entire game duration is considered as a sequence of time steps. As an example, the attacker A can think 

that if he/she sets Vj\ low and m high during the first few time steps, the defender D will set M to a low 

value, and then A can exploit it by setting TA high and m low in the next few time steps assuming that D 

does not change M. On the other hand, the defender can also decide a strategy based on his/her anticipation 

of the attacker's behavior. 

In general, it is harder to determine the Nash equilibrium for a dynamic game compared to the static game. 

Due to the space constraint, we do not present its formal analysis in this work. Let us consider that the 

game lasts for h time steps in total. When h is infinitely large, the game is said to have an infinite horizon, 

otherwise it is with a finite horizon. 

We first extend the notations used in the static game. Let r/\nrnt, and Mt denote the corresponding quan- 

tities at the t-th time step. We represent the attacker's and defender's payoffs at the t-th time step by Vt
a 

and Vjl, respectively, which are determined by the strategy profile (r^, , mt, Mt) at that step. Similarly, the 

attacker's and the defender's total payoffs are denoted by V'1 and Vd, respectively. 

We compute the total payoff of a player by adding his/her time serial payoffs over the entire game, i.e. 

Va = J2t=l V? anc* Vd = XV=i Vt- Tne attacker can construct his/her strategy by deciding r^t, m( at the 

t-th step Wt — l,...,h. Similarly, the defender can construct his/her strategy by deciding Mt at the f-th 
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step V* = 1, h. The strategy profile (r*A , m*, M*, t = 1,..., h) leads to the Nash equilibrium if it 

simultaneously satisfies the following two relations: 

V{r*A ,m;,M*,  t=l,...,h) - *(rAt, mt, M*,  t=l,...,h)  V,
'^M '"' 

V(7%,m;,Mf,  t=l,...Ji)^V(r%t,mi,Mt,  t=l,...,h)  V M> 

6.4    Simulation 

NS-3 is an advanced simulator tool written completely in C++ with optional binding for experiment scripts 

written in Python. There have been many recent developments with numerous research teams contributing 

their research as different modules for the simulator. FlowMonitor [ 16] is one such model which has inspired 

us to develop our own application to monitor packet flows. Unfortunately, FlowMonitor was not applicable 

in our experiment situation as it depends entirely upon the traced output of packet data, rather than inspecting 

these packets as they traverse NS-3's protocol stack. In our module, we need to develop a packet filtering 

module based on the game theory model and collect statistics on that module. For this packet-filtering 

module, we implement a unique network hook, which is used to observe packet flow information as they 

actually pass through the stack rather than at the end of the simulation. 

6.4.1    Development of New Modules in NS-3 

The NetHookFilter module we developed provides a means to manipulate the standard packet handling 

routines in NS-3. This concept has been widely used in Linux kernel for packet filtering, mangling, NAT 

(network address translation) and queuing packets for user-land inspection. Linux's NetFilter makes con- 

nection tracking possible through the use of various hooks in the kernel's network code. These hooks are 

places that kernel code, either statically built or in the form of a loadable module, can register functions to 

be called for specific network events at pre-defined locations within the protocol stack. 

NetFilter is a useful component of modern networked systems for addressing various issues regarding packet 

inspection and manipulation. Traditionally NetFilter implements hooks during a packet's traversal through 

the protocol stack at the following locations: pre-routing, local deliver, forward, and post-routing. Each 

hook corresponds to locations in which one might be interested in viewing/manipulating a packet as it 

traverses the stack. Unfortunately, this component does not yet exist within NS-3. In order to overcome this 

limitation, we have developed a new NS-3 module called NetHook, which can be aggregated to any node 

with a network protocol stack and enables a developer to integrate their own inspection module. This new 

module provides the capability of manipulating packets at any location within the protocol stack. 

As shown in Figure 9, NS-3 NetHook is implemented via an ordered list of callbacks associated by callback 

type and a given priority value. The NetHook callback list is then initiated via a call from within the existing 

NS-3 code via the method DoHooks(), and is capable of running any arbitrary number of hooks given the 

appropriate hook type.  NetHook is not limited to the traditional NetFilter inspection points, pre routing, 
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Figure 9: Implementation of NetHook. The function DoHook() enables the NetHook, which returns a 
boolean value that determines whether or not the packet needs to be dropped. 

post routing, locaLin, local out, and forward, rather it offers the flexibility for an NS-3 developer to im- 

plement an inspection callback at any location they desire within the NS-3 network system. The developer 

is left with the choice on the hook point for NetHook. They only need to implement the functor call and 

aggregate the NetHook object to the appropriate node within the topology. 

6.4.2    Experimental Setup 

We simulate our game-theoretic defense mechanisms in NS-3 to understand what aspects of networking 

would place constraints on the applicability of our model when applied to a real-world scenario. We wish to 

observe how control traffic would be affected, whether our model can be applied to data-intensive operations 

such as packet filtering, or even if the model could be applied at all. We adopt an attack model for raw 

bandwidth consumption where the attack nodes utilize UDP as the transport protocol in order to avoid using 

a modified TCP stack and avoid retransmission storms and their effect upon the simulation results. Figure 10 

shows the relationship of the core infrastructure (perimeter router, firewall, and edge switch) and the packet 
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filtering functionality. 
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Figure 10: NetHook::Filter integration into experimental network topology. 

We use the traditional dumbbell network topology for our experiments, as shown in Figure 6, which consists 

of three nodes where the leftmost node is the uplink node to which all legitimate and attack nodes are 

connected. The middle node of the dumbbell core is where we implement the packet filter. The rightmost 

node represents the local area network (LAN) side of the topology and provides connectivity for the server 

nodes. We use Point-to-Point channels to simplify the setup of the simulation topology. The left side of 

the topology has I Gbps of bandwidth while the rightmost side has I Mbps of bandwidth available with 

the bottleneck at the firewall node. The client nodes, either malicious or legitimate, are configured via the 

command line with arbitrary arguments for the number of nodes, packet size, and sending bit rates in order 

to support multiple runs with different settings. We use a constant bit rate generator available in NS-3, 

OnOffApplication, to generate packets destined to a server. 

The experiments are run in 10 cycles, where there are 50 legitimate nodes whose packet size is 512 bytes 

and sends at a rate of 15Kbps. The first cycle has 5 attack nodes that send at a total of 5Mbps that is divided 

evenly between each attack node, and the number of attack nodes increases by 5 for each cycle. Within each 

cycle, we change the filter midpoint setting three times at 250Kbps, 500Kbps, and 700Kbps, respectively. 

Each cycle consists of 90 runs in total, 30 runs for each midpoint settings, in which there is no change in 

the simulation's number of attack nodes. Each run lasts for 600 seconds in length where the legitimate 

nodes send at a constant rate and the attack nodes begin at 30 seconds and last for 300 seconds in total. The 
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exact same settings are used for cases without packet filtering in order to provide a baseline performance 

comparison. All simulations are run on an Intel Core-2 Duo 3Ghz machine with 4Gb of RAM and running 

Ubuntu 9.04 with Linux kernel version 2.6.28. Each run typically takes 3-10 minutes to complete depending 

on the number of nodes involved. The seed value of the random number generator in each run is incremented 

in order to ensure independent replication of the simulation results. 

90 
No defense mechanism 
GT-based defense mechanism 

Attack traffic starts: 30secs 
Attack traffic stops: 330 sees 

Regular traffic starts. 0 sec 
Regular traffic stops: 600 sees 

100 200 300 
Time (seconds) 

600 

Figure 11: Impact of DDoS attack on legitimate bandwidth consumption: 5 attacking nodes transmit at 
1Mbps each (total 5Mbps), 50 legitimate nodes transmit at 15Kbps each (total 750Kbps), and the •S'-curve 
midpoint is set at 500Kbps. 

6.4.3    Results 

The players' payoffs depend upon three components as discussed in Section 6.3 Our simulation focuses on 

the first component, which is the percentage of bandwidth consumed by the legitimate and attacking nodes. 

The second component, the fraction of active legitimate nodes, will be considered in our future work when 

the legitimate nodes send at different bit rates. The last component, the attacker's payoff falls outside the 

scope of this simulation. Figure 11 displays the effectiveness of our game theoretic defense mechanism 

against a DoS/DDoS attack. Figure 12 illustrates that there exists an optimal setting for the attacker, while 

Figure 13 shows the effectiveness of the attack can be reduced by selecting an appropriate midpoint setting. 

All experimental results indicate conclusively that the attacker can increase the number of attacking nodes, 
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Figure 12: Bandwidth consumed by legitimate nodes when varying the number of attack nodes. The total 
attack bit rate remains at 5Mbps. 

while decreasing the per-node bit rate, in order to bypass the filter. Conversely, the defender should select 

an appropriate £>'-curve midpoint in order to allow a majority of legitimate traffic while denying the attack 

traffic. If the £>'-curve midpoint is too high, then a large portion of the attack traffic will pass. These facts are 

consistent with the results from Figure 8 where we clearly see that there exists an optimal setting for both 

the attacker and the defender. 

6.5    Summary 

We presented a game theoretic model as a defense mechanism against a classic bandwidth consuming 

DoS/DDoS attack. Validation of our analytical results was performed utilizing the NS-3 network simulation 

tool. 

In our future work, we will consider the existence of multiple equilibria in some scenarios. We plan to extend 

our simulation to incorporate a normal distribution to select the sending rate of a legitimate flow. In addition, 

we plan to investigate the applicability of our game-theoretic defense mechanisms in scenarios where the 

attacker is interested in exploiting specific protocol mechanisms to create attacking conditions. The TCP 

congestion window is one example of such possibilities. Furthermore, we plan to simulate a dynamic game 
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Figure 13: Bandwidth consumed by legitimate nodes when varying the £-curve midpoint. There are 15 
attacking nodes whose aggregate rate is 5Mbps. 

where both the attacker and the defender can alter their strategies during the attack event. We also plan 

to contribute our NetHook module to the NS-3 codebase in order to make it available to other researchers 

interested in packet manipulation within the simulator. 
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7    Metrics to Evaluate Game Theoretic Defense Solutions 

The use of game theory approach in the network security field has increased recently. Game theory has the 

advantage of modeling the interactions between an attacker and defender, where players have the ability to 

analyze other player's behavior. This may provide the ability for an administrator to develop a better strategic 

defense for the system. Cronin |25| stated that a committed resource must be able to defend information 

warfare strategies in an effort to protect themselves against theft, disruption, distortion, denial of service, or 

destruction of sensitive information assets. It is vital to provide a network administrator the capability to 

compare different strategies using the appropriate metrics to maximize the defense of a network. 

A variety of game theoretic models have been proposed with detailed information for analysis. Bellovin |7| 

infers that designing proper metrics to provide security measurement is a tough problem that should not be 

underestimated. Current research is lacking in terms of providing information which a system administra- 

tor can use in determining what type of metrics to use when developing a specific game theoretic defense 

model. One of the problems faced by the researchers in security games is how to evaluate different network 

security game models, in terms of performance, accuracy and effectiveness. The Institute for Information 

and Infrastructure Protection (I3P) has identified a security metrics as priority for current research and de- 

velopment [32]. We will extend this notion to provide a comprehensive research to disseminate metrics that 

will aid in analyzing the overall performance and quality of a game theoretic model. Thus, the objective of 

our work is to define metrics that allow the comparison of different game theoretical attack-defense models 

at various times. Values of these metrics may change over time due to the change of the network setting; the 

network configuration may change because of a part of the system being compromised or recovered |79|. 

Changing values in a network setting may cause a change in the level of security. We propose a taxon- 

omy that provides a metric centric approach to disseminate vital information to evaluate the security level, 

performance, and quality in a game theoretic defense architecture. 

Section 7 is organized as follows: In section 7.1, we provide a literature review of research that has been 

conducted involving security metrics. In section 7.2, we define the collected metrics and propose a few 

metrics. In section7.3, we discuss our idea on comparing different game theory models using the proposed 

metrics. In the section 7.4, we conclude this section of the report with a summary and provide insight for 

future work. 

7.1    Related Work 

In this section we will review the literature related to metrics for game theoretic defense analysis. We will 

also highlight literature involving metrics for risk assessment and computer information security. 

He et al. [41] presented a novel Game Theoretical Attack-Defense Model (GTADM) based on network 

security risk assessment. This model is used to consider a threat probability that influences the attacker's 

decision which depends on the defender's one. The game described in this section is a non-zero sum static 

game with complete information. He defined an approach to formulate the payoff matrix based on the cost- 

benefit analysis, where many metrics are defined. These metrics include expected loss by attack, recovery by 
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restore, operational cost, response cost, response negative cost, expected income by attack, punishment after 

being detected, and cost of obtaining attack tools. Based on these metrics, the model produces the threat 

probability, which is the main goal of this work. Finally, this work demonstrated the advantage of using 

game theory in risk assessment that is taking into consideration the dependency relationship in decisions 

between the attacker and the defender. 

Carin et al. 115| proposed a novel approach named Quantitative Evaluation of Risk for Investment Efficient 

Strategies (QuERIES) to quantitative cyber risk assessment. This method focused more on protecting critical 

Department of Defense Intellectual Property (IP). QuERIES approach involves three main elements. First, 

modeling the security strategy by developing an attack/protect model in a game theoretic context. Second, 

is to reverse engineer methodologies to develop attack graphs used for modeling attacks. Third, quantifying 

parameters that have been used in security strategy and attack models to evaluate and quantify the impact 

of the attacker's strategies on protection effectiveness. This last element performs a cost benefit analysis. 

For this purpose, QuERIES methodology produces relevant quantitative metrics such as the expected cost 

of defeating the protection, the expected time to defeat the protection, the expected cost of defeating the 

protection given that the protection is defeated at or before a given time, the optimal decision time for an 

attacker to quit if they have not succeeded, and the associated probabilities of success. All calculations of 

these metrics are based on the probability distribution of time (in man hours) required to successfully reverse 

engineer protected software. 

Cremoni and Nizovtsev [24] suggested that understanding the behavior of an attacker has a big impact on 

the security measure. This work provided an economic model that models the behavior of the attackers 

when they are able to obtain complete information about the security characteristics of targets when the 

information is unavailable. They perform a cost benefit analysis of the attacker in order to evaluate the 

security level of the system. For this purpose, they proposed many metrics, such as the attacker's cost, 

which is to be increasing in the amount of effort spent by an attacker into an attack and the amount of effort 

is expressed in term of time. They believe that an attacker put more effort when the security level of the 

system is low. Another metric is the expected benefit from an attack. 

Lye [58| presented a game theoretic model for analyzing the network security. They view the interactions 

between the attacker and the administrator as a two player's stochastic game and construct a model for 

the game. This work provides metrics that quantifies the payoff matrix of the game, which may provide 

a mean for improving the defense strategy. The metrics present the benefit of an attacker in terms of the 

amount of the damage he/she does to the network. Also, they explained that the amount of recovery effort 

(time) required by the administrator to bring the network from state to state is a benefit for the attacker. 

Some attacker's costs are difficult to quantify, for example, the loss of marketing strategy information to a 

competitor can cause large monetary losses. 

Alpcan and Basar |3] proposed a game theoretic analysis of intrusion detection in an access control environ- 

ment. They provided several common metrics that were used to help identify the performance of the IDS. 

Using the metrics they provided, simulation was used to determine the costs and actions of the attacker and 

IDS. 
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Bloem et al. 110] proposed an intrusion response as a resource allocation problem, where the resources being 

used were the IDS and network administrator. They provided insightful metrics regarding the response time 

of an IDS and its ability to respond without the administrator's involvement. Also, they used an administrator 

response time metric to determine the time of effort used to compute administrator involvement after an 

alert from the IDS. This metric can prove beneficial in determining how well a system is able to successfully 

respond against attacks while minimizing the administrator's involvement. 

Liu et al. [55] proposed an incentive based modeling and inference of attacker intent, objectives, and strate- 

gies. They provided several examples the compute the bandwidth at a point in time before, during, and after 

an attack. They specified metrics to compute the absolute impact and relative availability to determine the 

system degradation. These metrics are used to distinguish how well the system was able to capitalize on the 

attack, as well as how well the attacker was able to succeed in reducing the bandwidth. 

You and Shiyoung 1101 ] proposed a network security behavior model based on game theory. They provide 

a framework for assessing security using the Nash equilibrium of game theory. In assessing the security, 

they also provide metrics used to analyze the payoff and cost of an attacker and defender using the exposure 

factor, average rate of occurrence, single loss expectancy, and annual loss expectancy. 

Savola [821 surveyed emerging security metrics approaches in various organizations and provided a taxon- 

omy of metrics that were applicable to information security. His taxonomy provided a high level approach 

to classifying security metrics for security management involving organization, operational, and technical 

aspects. He also included high level classification for metrics involving security, dependability, and trust for 

products, systems, and services. The metrics provided are all high level, with a lack of specific metrics used 

for each category, but he provides a good starting point to organizations needing to begin analyzing various 

security metrics within their organization. 

Fink et al. |29| proposed a metrics-based approach to intrusion detection system evaluation for distributed 

real-time systems. They provided a set of metrics to aid administrators of distributed real-time systems to 

select the best IDS system for their particular organization. They presented valuable information needed 

to successfully gather the requirements of an organization in order to capture the importance, then use the 

requirements to successfully measure the performance in accordance to the requirements imposed by the 

organization. 

7.2    Proposed Metrics 

This section describes the metrics we were able to retrieve from the literature and determine how various 

game theoretic models can be analyzed to quantify the performance. An information security measurement 

principle provides insight to how well a system is performing and if financial investments are beneficial. 

Major benefits include improving accountability for information security activities, increasing information 

security performance, and providing quantifiable inputs for financial commitment. 

Based on the literature review, we define several metrics that quantify the attacker's and defender's benefit 

and cost in a game. We divide these metrics into three categories: defender metrics, attacker metrics, and 
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system metrics. The defender metrics are associated to the cost and benefit of detecting an attack. The 

attacker metrics is the cost and benefit of attacking an asset. The system metrics is used to measure the 

performance and quality of a game theoretic defense architecture system. 

Benefit of defender 

He et al. |4I | uses a non-cooperative non zero-sum game with complete information. He defines the benefit 

of a defender based on these metrics: 

1. The damage of defender when an attack action is successful (Soamage) 

2. The damage of defender when the attack action is detected by IDS (Fi)amage) 

3. Restore which causes the recovery from the attack action 

4. The detection rate of IDS (p) 

He provided a calculation for each metric, such as: 

S Damage = Conp X Con,v + Intp X Intv + Avap X A'Va,, 

Corip, Intp, Avap are the damage degrees the attack action has made on the attack object respectively in 

Confidentiality, Integrity and Availability, and Conv,Intv,Avav are the objects assets in Confidentiality, 

Integrity and Availability. These values are not constants, and they can be set by the network administrator. 

Foamage = ( Conp x Conv + Intp x Intv + Avap x Avav) - Restore 

Based on these metrics we calculate the benefit of a defender, where values depend on the attacker and 

defender's action. We have 4 cases: 

When the attacker and defender both take actions : 

Benefit of defender =  - (Soamage) X (1 - p) -  {Foamage) x V 

When the attacker takes an action and the defender decides to not defend: 

Benefit of defender =  - {SDamage) 

When the attacker doesn't take any action and the defender takes an action: 

Benefit of defender = 0 

When the attacker doesn't take any action nor the defender : 

Benefit of defender = 0 
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Cost of defender 

He et al. |41 ] indicated the cost of a defender consists of Operational Cost, Response Cost and Response 

Negative. He provided these calculations for each metric: 

1. Operational Cost can be derived from risk assessment knowledge Library. 

2. Response negative (Acost) = -Pa x Avav; Pa is in |0, 11 is the damage degree to the availability of the 

system caused by response actions. 

3. Response Cost (Rcost) value is derived from the Attack-defense Knowledge Library. 

4. Pm is the false detection rate of IDwS. 

Value of defender cost depends on the strategy of defender and attacker. Thus, we have 4 situations in the 

game: 

When the attacker and defender take both of them, actions: 

Cost of defender = - {Rcost + Pa x Ava) x /; 

- When the attacker takes an action and the defender decides to not defend: 

Cost of defender = 0 

- When the attacker doesn't take any action and the defender takes an action: 

Cost of defender = - {Rcost + Pa x Ava) x Pm 

- When the attacker doesn't take any action nor the defender: 

Cost of defender = 0 

Benefit of attacker 

He et al. [411 indicates that the benefit of attacker is based on the loss of defending a system. He provides 

this calculation: 

Benefit of attacker = - A: x Benefit of defender 

k is in [0,1 ], which is the rate that transforms the defender's loss into the benefit 

of attacker's. For simplicity, k can be set to 1. Thus: 

Benefit of attacker = - Benefit of defender 

There are 4 situations in the game: 

- When the attacker and defender take both of them, actions: 

Benefit of attacker = {SDamage) x (l-p) + ( FDamage) x p 

- When the attacker takes an action and the defender decides to not defend: 

Benefit of attacker = Soamage 

- When the attacker doesn't take any action and the defender takes an action: 

Benefit of attacker = 0 
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- When the attacker doesn't take any action nor the defender: 

Benefit of attacker = 0 

Cremonini and Nizovtsev |4| defined the benefit of attacker in terms of the amount of effort put by an 

attacker into an attack. He mentioned that the effort is measured by time. Thus the benefit of attacker is 

calculated using this formula: 

Benefit of attacker = E (B(x)), x: the amount of effort put in attack 

E(B (x-) = 7T (x) * G 

•K (x) : probability of success of attack given the amount of effort put into attack 

G: One time payoff the attacker receives in the case of successful attack 

Lye |59| defines the benefit of an attacker in terms of these two metrics: 

1. Amount of damage of the attack in the system 

2. Amount of recovery effort (time) required by defender to bring the network from state to state 

Lye et al. benefit metric is limited with the lack of parameters used for cost benefit analysis. 

Cost of Attacker 

Cremonini and Nizovtsev |4| defined the cost of an attack in a function to determine the amount of effort 

(time) by an attacker. He doesn't provide a specific calculation for this metric. He et al. |2] defines the cost 

of attacker based on these two metrics: 

1. Cost of lunching an attack (Act-Cost) 

2. Punishment to the attacker (Att-pun) is consisted of the legal loss of the attacker 

The value of the cost of attacker depends on the attacker and defender's strategy. Thus, there are 4 situations 

in the game: 

- When the attacker and defender take both of them, actions: 

Cost of attacker = Act-Cost + p x Attjpun 

- When the attacker takes an action and the defender decides to not defend: 

Cost of defender = Act.Cost 

- When the attacker doesn't take any action and the defender takes an action: 

Cost of defender - 0 
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- When the attacker doesn't take any action nor the defender: 

Cost of defender = 0 

Number of rounds to reach a Nash Equilibrium 

Burke 112| proposed a metric which provides the number of turns to reach a Nash Equilibrium, in order to 

evaluate a game theory model of information warfare, based upon the repeated games of incomplete informa- 

tion model. Burke stated equilibrium provides the ability to analyze a game theory model's predictive power 

as it shows what strategies each player should use in order to maximize utility. The Nash equilibrium of a 

game involves solving the game - finding a unique, optimal course of play for each player. Lower NORRE 

values specify a player has reached equilibrium quickly, demonstrating that they are playing in harmony 

with the model's prediction. NORRE provides the basis for determining if players have reached equilibrium 

and then comparing the time to reach equilibrium across subjects and treatment conditions. Each subject's 

pure strategy game NORRE scores will be used to compute the average NORRE. This evaluation is done in 

terms of accuracy and performance. 

You and Shiyong 1101 ] provided metrics that help compute the payoff and cost of an attacker and defender 

using the exposure factor, average rate of occurrence, single loss expectancy, and annual loss expectancy. 

These metrics are defined below. 

Exposure Eactor (EE) 

EF = percentage of loss a threat would have on a specific asset. 

Average Rate of Occurrence (ARO) 

ARO = Number that estimates the frequency a threat is expected to occur. 

Single IA>SS Expectancy (SEE) 

SLE = Asset Value,  x Exposure. Factor 

Annual loss expectancy (AEE) 

ALE = SLE x ARO 

Carin et al. 115] proposed a novel approach using a Quantitative Evaluation of Risk for Investment Effi- 

cient Strategies (QuERIES) to cyber risk assessment. They proposed various metrics to evaluate the At- 

tack/Protect Model. The calculation of these metrics is based on generating a probability distribution for 

cost, in terms of time, of successfully defeating the protections applied to critical intellectual property (IP). 

Below we list the metrics used to provide risk related derivative associated to the probability of attack. 

The expected cost of defeating the protection 

The expected cost of defeating a protection involves the cost in man hours an attacker would have exhibit to 

successfully defeat the protection. The probability distribution (Pr) is based on historical data of success- 
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fully attacking the IP. 

oo 

J>pr(i) 
i=0 

where ci is the cost of the ith man-hour in the attack 

The expected time to defeat the protection 

The expected time of defeating a protection involves the hours an attacker contributes to successfully defeat 

the protection. The probability distribution (Pr) is based on historical data of successfully attacking the IP. 

J>r. 
i=0 

The expected cost of defeating the protection given that the protection is defeated at or before time t 

Using the expected cost of defeating the protection, we can derive the cost of defeating the protection at or 

before the expected time. For instance, if an attacker is aware of the time it takes to defeat a particular asset, 

but they decide to purchase additional tools to defeat the protection. This additional cost to learn the tool to 

defeat the protection in an accelerated fashion is calculated below. 

El=0^r(») 
E!=0^r(0 

The optimal decision time for an attacker to quit if they have not yet succeeded 

Carin et al. [15] proposed the metric to calculate the attacker's optimal decision time for an attacker to quit 

if attack is unsuccessful is valuable. Although, they do not define the parameters used within this metric, 

we can deduce the optimal time being the average time it takes to defeat the protection of an IP. If attacker's 

time is greater than the average time, we can conclude the chance of being captured/detected increases, thus 

the optimal time to quit correlates to the expected time to defeat the IP. 

Overall Game Quality 

Jansen |44| stated qualitative assignments can be used to represent quantitative measures of security prop- 

erties (e.g., vulnerabilities found). We define a metric Overall Game Quality (OGQ) = Availability x Per- 

formance x Quality, where the game is computed based on the availability of the system (e.g. percentage 

of available bandwidth), the performance of the game (e.g. average NORRE), and the quality of the system 

(e.g. false positive rate). This metric is based off the overall equipment effectiveness, where game theory 

parameters are applied to measure the efficiency of various games [3[. 

OGQ - Availability x  Perfermanc x Quality 
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The Center for Internet Security |33| has developed a list of metrics that help organizations assess the 

performance of various assets with parameters used to calculate the metric. Below are the metrics we have 

selected to help evaluate our game theoretic defense architecture. 

Incident Rate 

Incident Rate indicates the number of detected security breaches a system or asset experienced during an 

allotted time period. Using incident rate, with a combination of other metrics, can indicate the level of 

threats, effectiveness of security controls, or attack detection capabilities. 

IR = Countf Incidents) 

Mean Time to Incident Discovery 

Mean-Time-To-Incident-Discovery characterizes the efficiency of detecting attacks, by computing the aver- 

age elapsed time between the initial occurrence of an incident and its subsequent discovery. The MTTID 

metric also serves as a leading indicator of flexibility in system or administrator's ability to defend as it 

measures detection of attacks from known and unknown vectors. 

MTTID = ]T (Date0fDiscovery-Date0fOccurrence)/Count(Incidents) 

Mean Time to Incident Recovery 

Mean Time to Incident Recovery measures the effectiveness of recovering from an attack. The more respon- 

sive a system or administrator is able to respond to an attack, the less impact the attack may have on the 

asset. 

MTTIR = Yl (DateofRecovery-DateofOccurreiKxO/C0'111^1111'-"^11*^) 

Mean Time to Mitigate Vulnerability 

Mean time to mitigate vulnerabilities measures the average time exhibited to mitigate identified vulnerabil- 

ities in a particular asset. This metric is an indicator of a system or administrator's ability to patch and or 

mitigate a known vulnerability to reduce or remediate the risk of exploitation. 

MTTMV = Y, (Date0fMitigation-Date0fDetection)/Count(MitigatedVulnerabilities) 

These metrics further provide the ability to determine the best metric to evaluate in various types of game 

theoretic models to establish the performance and quality of the selected model. To better determine which 

metric is appropriate for a particular game theoretic model, the next section will provide a framework used 

for evaluation. 

7.3    Comparing Game Theoretic Defense Solutions 

Quantifying the performance of a game theoretic defense model aids a network administrator's ability to 

optimize defense strategies. Applying performance in addition to the payoff metrics will help capture the 

quality of the defense system. Figure 14 depicts the game assessment procedure (GAP) used to visualize the 

appropriate metrics an administrator can use to assess the performance of various game theoretic defense 

76 



models. Our objective is to compare game theoretic defense solutions, where the defender can evaluate the 

best game defense solution via a static or dynamic method. Dynamic method involves the defender selecting 

a solution at a specific time, whereas the static method involves selecting a solution without factoring in time. 

Supporting a defender to make such decision, we provided a list of metrics used in the evaluation process. 

The following scheme explains the process that a defender should follow, in order to select the best game 

theoretic defense solution. An analysis of how the selection process is captured is presented below. 

/ - 

( mttrie 1 I— I metric:j (n*mci t— 1' 
\ ! \ 1 

\ 
w:\ 

.-" 

/ 

Weighted Game 
Value 

System Sate S (t) 

Figure 14: Game Assessment Procedure: With an example of three game models and four metrics. This 
procedure is used to evaluate and select the best game for a network administrator to maximize his/her 
potential in defending the network 

1. The defender or network administrator assigns a weight to each metric as follow: w\, w-2, "':{- and w/\ are 

assigned respectively for metric I, metric2, metric3 and metric4. 

2. System State (configuration), S changes over time t.   Thus, the values of metrics for a game are 

updated, which may lead to a change in the defender's game selection over time. 

3. The value of each game is obtained as follows. 

These calculations allow us to determine the value of each game, based on weight. The Defender's goal is 

to select the game which results in the highest value. 

VA(t)= ^Vi(A,S(t))* 

i 

VB(t)= Y^Vi(B,S(t))* 

ii', 

Wi 

i=\ 
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Vc(t)= ^2vi(C,S(t))* Wi 

Figure 14 illustrates the above game assessment procedure with an example of three game models, A, B, 

and C and four metrics. The value of /'—th metric at time t for game X is represented by vr(X, S(t)), and 

Vx(t) denotes the overall value of game X at time t. This procedure is used to evaluate and select the best 

game for a network administrator to maximize his/her potential in defending the network. 

7.4    Summary 

Game Theoretic models continue to provide information and analysis to initiate defense solutions against an 

attack for a network administrator. This section of the report is an attempt to provide an intuitive taxonomy 

that a network administrator can use to synthesize how well a particular game theoretic defense model is 

performing in a network. We list numerous metrics used in various game models. We believe providing a 

list of metrics for a game intrusion defense architecture will provide an administrator with the appropriate 

information to make an educated decision in game theoretic defense analysis. Creative metrics are evident 

to revolutionize a network administrator's ability to compare various defense schemes. This work provides 

a foundation for game theoretic defense analysis and performance evaluation. 
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8    Conclusion 

Despite considerable effort by the research community and the practitioners for the last two decades, the 

cyberspace is far from completely secure. In this project we explored the usability of game theoretic defense 

mechanisms. We performed extensive research along a few important directions such as building a state- 

of-the-art attack taxonomy, a taxonomy of the existing game-theoretic solutions to cyber security problems, 

a stochastic game model for generic cyber activities based on realistic assumptions, a game model for the 

DoS/DDoS attacks and the possible countermeasures, and designing a set of metrics which can evaluate the 

cost and benefit of a game-theoretic defense solution. In addition, we proposed a few important research 

directions for future work. 

We envision a semi-autonomous defense architecture which leverages a game theoretic model to counter 

cyber attacks. The Game Inspired Defense Architecture (GIDA) |85| will be capable of transparently ob- 

serving network traffic, identifying malicious activity, measuring the risk, and acting upon that information 

in a way that will offer the best defense measure for that situation. The brain of GIDA is a game model 

which decides the best countermeasure after a thorough analysis of the cost and reward. 

We stress that GIDA does not require a specific game model to be functional; any relevant game model 

can be plugged into GIDA. It is up to the system administrator to choose the most effective game model 

depending on the cyber scenario and implement the selected game model logic. The system administrator 

may statically selects the game model depending on his preference, network configurations, and the expected 

cyber scenario. We also propose to study the possibility and outcome of dynamic selection of the model 

during the game. 

In addition to designing a game model, we will need to address a number of core research issues to realize 

GIDA. We envision GIDA as consisting of three key components: A set of game agents along with the cen- 

tral game coordinator, an administrative console, and a dynamic honeynet. These three components interact 

in a semi-autonomous fashion in order to provide a means to identify, evaluate, and act upon network flows. 

The honeynet in particular, provides a means to redirect malicious flows into dynamically instantiated hon- 

eypots for observation of malicious activity and the forensic data pertaining to it. Finally, the administrative 

console will provide a user interface that will allow to correlate the network state data, provide a control 

channel for messaging, perform forensic analysis of honeypot data, and maintain the configuration settings 

for the various components. 
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